首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >A Fourier-accelerated volume integral method for elastoplastic contact
【24h】

A Fourier-accelerated volume integral method for elastoplastic contact

机译:弹塑性接触的傅里叶加速体积积分方法

获取原文
获取原文并翻译 | 示例

摘要

The contact of solids with rough surfaces plays a fundamental role in physical phenomena such as friction, wear, sealing, and thermal transfer. However, its simulation is a challenging problem due to surface asperities covering a wide range of length-scales. In addition, non-linear local processes, such as plasticity, are expected to occur even at the lightest loads. In this context, robust and efficient computational approaches are required. We therefore present a novel numerical method, based on integral equations, capable of handling the large discretization requirements of real rough surfaces as well as the nonlinear plastic flow occurring below and at the contacting asperities. This method is based on a new derivation of the Mindlin fundamental solution in Fourier space, which leverages the computational efficiency of the fast Fourier transform. The use of this Mindlin solution allows a dramatic reduction of the memory imprint (as the Fourier coefficients are computed on-the-fly), a reduction of the discretization error, and the exploitation of the structure of the functions to speed up computation of the integral operators. We validate our method against an elastic-plastic FEM Hertz normal contact simulation and showcase its ability to simulate contact of rough surfaces with plastic flow. (C) 2019 Elsevier B.V. All rights reserved.
机译:固体与粗糙表面的接触在诸如摩擦,磨损,密封和热传递等物理现象中起着基本作用。但是,由于表面粗糙度覆盖了广泛的长度范围,因此其仿真是一个具有挑战性的问题。另外,即使在最轻的负载下,也会发生非线性局部过程,例如塑性。在这种情况下,需要鲁棒而有效的计算方法。因此,我们提出了一种基于积分方程的新颖数值方法,该方法能够处理实际粗糙表面的大离散化要求以及在接触粗糙面以下和接触粗糙面发生的非线性塑性流动。该方法基于傅立叶空间中Mindlin基本解的新推导,它利用了快速傅立叶变换的计算效率。使用此Mindlin解决方案可显着减少内存烙印(因为可实时计算傅立叶系数),减少离散误差,并利用函数结构加快运算速度。积分运算符。我们针对弹塑性有限元法赫兹法向接触模拟验证了我们的方法,并展示了其模拟粗糙表面与塑性流动接触的能力。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号