首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Machine learning in drug development: Characterizing the effect of 30 drugs on the QT interval using Gaussian process regression, sensitivity analysis, and uncertainty quantification
【24h】

Machine learning in drug development: Characterizing the effect of 30 drugs on the QT interval using Gaussian process regression, sensitivity analysis, and uncertainty quantification

机译:药物开发中的机器学习:用高斯过程回归,灵敏度分析和不确定性量化表征30种药物对QT间隔的影响

获取原文
获取原文并翻译 | 示例

摘要

Prolonged QT intervals are a major risk factor for ventricular arrhythmias and a leading cause of sudden cardiac death. Various drugs are known to trigger QT interval prolongation and increase the proarrhythmic potential. Yet, how precisely the action of drugs on the cellular level translates into QT interval prolongation on the whole organ level remains insufficiently understood. Here we use machine learning techniques to systematically characterize the effect of 30 common drugs on the QT interval. We combine information from high fidelity three-dimensional human heart simulations with low fidelity one-dimensional cable simulations to build a surrogate model for the QT interval using multi-fidelity Gaussian process regression. Once trained and cross-validated, we apply our surrogate model to perform sensitivity analysis and uncertainty quantification. Our sensitivity analysis suggests that compounds that block the rapid delayed rectifier potassium current I-Kr have the greatest prolonging effect of the QT interval, and that blocking the L-type calcium current I-CaL and late sodium current I-NaL shortens the QT interval. Our uncertainty quantification allows us to propagate the experimental variability from individual block-concentration measurements into the QT interval and reveals that QT interval uncertainty is mainly driven by the variability in I-Kr block. In a final validation study, we demonstrate an excellent agreement between our predicted QT interval changes and the changes observed in a randomized clinical trial for the drugs dofetilide, quinidine, ranolazine, and verapamil. We anticipate that both the machine learning methods and the results of this study will have great potential in the efficient development of safer drugs. (C) 2019 The Authors. Published by Elsevier B.V.
机译:延长的QT间隔是心间心律失常的主要危险因素,突然心死的主要原因。已知各种药物触发QT间隔延长并增加预临床潜力。然而,在细胞水平上的药物对QT间隔的延长,药物对整个器官水平的延长是多么准确地理解。在这里,我们使用机器学习技术来系统地表征30种常见药物对QT间隔的影响。我们将来自高保真三维人心心脏模拟的信息与低保真一维电缆模拟,以使用多保真高斯过程回归为Qt间隔构建代理模型。一旦训练和交叉验证,我们应用了我们的代理模型以执行敏感性分析和不确定性量化。我们的敏感性分析表明,阻挡快速延迟整流钾电流I-KR的化合物具有QT间隔的最大延长效果,并且阻断L型钙电流I-CAL和晚期电流I-NAL缩短了QT间隔。我们的不确定度量允许我们将实验可变性从单独的块浓度测量传播到QT间隔内,并揭示了QT间隔不确定性主要由I-KR块中的可变性驱动。在最终的验证研究中,我们在预期的QT间隔变化和药物Dofetilide,奎尼丁,雷龙嗪和维拉帕米的随机临床试验中观察到的变化之间的良好协议。我们预计机器学习方法和本研究的结果都将在更安全的药物的有效开发中具有巨大潜力。 (c)2019年作者。由elsevier b.v出版。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号