首页> 美国卫生研究院文献>Frontiers in Human Neuroscience >Gaussian Process Regression for Predictive But Interpretable Machine Learning Models: An Example of Predicting Mental Workload across Tasks
【2h】

Gaussian Process Regression for Predictive But Interpretable Machine Learning Models: An Example of Predicting Mental Workload across Tasks

机译:可预测但可解释的机器学习模型的高斯过程回归:预测跨任务的心理工作量的示例

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

There is increasing interest in real-time brain-computer interfaces (BCIs) for the passive monitoring of human cognitive state, including cognitive workload. Too often, however, effective BCIs based on machine learning techniques may function as “black boxes” that are difficult to analyze or interpret. In an effort toward more interpretable BCIs, we studied a family of N-back working memory tasks using a machine learning model, Gaussian Process Regression (GPR), which was both powerful and amenable to analysis. Participants performed the N-back task with three stimulus variants, auditory-verbal, visual-spatial, and visual-numeric, each at three working memory loads. GPR models were trained and tested on EEG data from all three task variants combined, in an effort to identify a model that could be predictive of mental workload demand regardless of stimulus modality. To provide a comparison for GPR performance, a model was additionally trained using multiple linear regression (MLR). The GPR model was effective when trained on individual participant EEG data, resulting in an average standardized mean squared error (sMSE) between true and predicted N-back levels of 0.44. In comparison, the MLR model using the same data resulted in an average sMSE of 0.55. We additionally demonstrate how GPR can be used to identify which EEG features are relevant for prediction of cognitive workload in an individual participant. A fraction of EEG features accounted for the majority of the model’s predictive power; using only the top 25% of features performed nearly as well as using 100% of features. Subsets of features identified by linear models (ANOVA) were not as efficient as subsets identified by GPR. This raises the possibility of BCIs that require fewer model features while capturing all of the information needed to achieve high predictive accuracy.
机译:对于被动监视人类认知状态(包括认知工作量)的实时脑机接口(BCI)越来越引起人们的关注。但是,基于机器学习技术的有效BCI常常会充当难以分析或解释的“黑匣子”。为了使BCI更具可解释性,我们使用了功能强大且易于分析的机器学习模型高斯过程回归(GPR),研究了一系列N背工作记忆任务。参与者以三个刺激变量(听觉,语言,视觉空间和视觉数字)执行N背任务,每个变量在三个工作记忆负荷下进行。对GPR模型进行了训练,并对来自所有三个任务变体的EEG数据进行了测试,以试图确定一个模型,该模型可以预测精神负荷需求,而与刺激方式无关。为了提供GPR性能的比较,还使用多元线性回归(MLR)对模型进行了训练。当对单个参与者的脑电图数据进行训练时,GPR模型是有效的,从而导致真实和预测的N-背水平之间的平均标准化均方误差(sMSE)为0.44。相比之下,使用相同数据的MLR模型得出的平均sMSE为0.55。我们还演示了如何使用GPR来识别哪些EEG功能与单个参与者的认知负荷预测有关。脑电图特征的一小部分占模型预测能力的大部分;仅使用排名前25%的功能所获得的效果几乎与使用100%的功能所获得的效果相同。通过线性模型(ANOVA)识别的特征子集不如通过GPR识别的子集有效。这增加了BCI需要较少模型特征的可能性,同时捕获了实现高预测精度所需的所有信息。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号