首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Optimization of expensive black-box problems via Gradient-enhanced Kriging
【24h】

Optimization of expensive black-box problems via Gradient-enhanced Kriging

机译:通过梯度增强克里金法优化昂贵的黑盒问题

获取原文
获取原文并翻译 | 示例

摘要

This paper explores the use of Gradient-enhanced Kriging for optimization of expensive black-box design problems, which is not completely limited by the conventional Efficient Global Optimization algorithm framework. Specifically, we give the best linear unbiased predictor and mean squared prediction error of the partial derivatives of Gradient-enhanced Kriging and then propose a measure named "Approximate Probability of Stationary Point" to estimate the approximate probability of a candidate infill point be a stationary point of the underlying function. When it comes to the selection of infill point, we not only maximize the well-known Expected Improvement but also evaluate the Approximate Probability of Stationary Point as a "double-check" step. Then the infill decision is made according to the extent of consistency between these two quantities. Furthermore, to examine whether the optimization process will gain from sparing more costs for response evaluation, we investigate also the cases that the gradient evaluation step is conditionally skipped in some iterations. Three new infill criteria are proposed and experimented with three analytical test functions and an airfoil optimal shape design. Results show that the optimization performance can be improved by exploiting the auxiliary gradient information in the proposed way. (C) 2020 ElsevierB.V. All rights reserved.
机译:本文探索了使用梯度增强克里金法优化昂贵的黑盒设计问题的方法,而传统的高效全局优化算法框架并没有完全限制这一点。具体而言,我们给出了梯度增强克里格法偏导数的最佳线性无偏预测因子和均方预测误差,然后提出了一种名为“平稳点的近似概率”的措施,以估计候选填充点为平稳点的近似概率基础功能。关于填充点的选择,我们不仅最大化了众所周知的预期改进,而且还将“固定点的近似概率”评估为“双重检查”步骤。然后根据这两个量之间的一致性程度来决定填充。此外,为了检查优化过程是否会因节省更多成本来进行响应评估而获益,我们还研究了在某些迭代中有条件跳过梯度评估步骤的情况。提出了三个新的填充标准,并通过三个分析测试功能和机翼的最佳形状设计进行了试验。结果表明,该方法可以通过利用辅助梯度信息来提高优化性能。 (C)2020爱思唯尔版权所有。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号