首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Filter-based adaptive Kriging method for black-box optimization problems with expensive objective and constraints
【24h】

Filter-based adaptive Kriging method for black-box optimization problems with expensive objective and constraints

机译:具有目标和约束条件昂贵的黑盒优化问题的基于滤波器的自适应Kriging方法

获取原文
获取原文并翻译 | 示例

摘要

To reduce the computational cost of solving engineering design optimization problems with both expensive objective and constraints, a novel filter-based adaptive Kriging method notated as FLT-AKM is proposed in this paper. In FLT-AKM, a probability of constrained improvement (PCI) criterion is developed based on the notion of filter to sequentially generate new samples for updating Kriging metamodels of objective and constraints. At each iteration, an infill sample point is allocated at the position where the PCI is maximized to achieve potential improvement in optimality and feasibility. And the Kriging metamodels are consecutively updated by the newly-added infill sample points, which leads the FLT-AKM search to rapidly converge to the global optimum. The performance of the proposed FLT-AKM method is tested on a number of numerical benchmark problems via comparing with several widely-used metamodel-based constrained optimization methods. The comparison results indicate that FLT-AKM generally outperforms the competitors in terms of global convergence and efficiency performance. Finally, FLT-AKM is successfully applied to an all-electric GEO satellite MDO problem. The optimization results show that FLT-AKM is able to find a better feasible design with fewer computational budgets compared with our previous study, which demonstrates the effectiveness and practicality of the proposed FLT-AKM method for solving real-world expensive black-box engineering design optimization problems. (C) 2018 Elsevier B.V. All rights reserved.
机译:为了降低目标和约束昂贵的解决工程设计优化问题的计算成本,提出了一种新的基于滤波器的自适应Kriging方法,称为FLT-AKM。在FLT-AKM中,基于过滤器的概念来开发约束改进(PCI)准则,以顺序生成新样本以更新目标和约束的Kriging元模型。在每次迭代中,将填充采样点分配到PCI最大化的位置,以实现最佳性和可行性的潜在改进。并且,克里格元模型通过新添加的填充采样点连续更新,这使得FLT-AKM搜索迅速收敛到全局最优值。通过与几种广泛使用的基于元模型的约束优化方法进行比较,在许多数值基准问题上测试了所提出的FLT-AKM方法的性能。比较结果表明,就全球融合和效率表现而言,FLT-AKM通常优于竞争对手。最后,FLT-AKM成功应用于全电GEO卫星MDO问题。优化结果表明,与我们以前的研究相比,FLT-AKM能够以更少的计算预算找到更好的可行设计,这证明了所提出的FLT-AKM方法解决现实世界中昂贵的黑盒工程设计的有效性和实用性优化问题。 (C)2018 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号