首页> 外文期刊>Computers & operations research >Stochastic radial basis function algorithms for large-scale optimization involving expensive black-box objective and constraint functions
【24h】

Stochastic radial basis function algorithms for large-scale optimization involving expensive black-box objective and constraint functions

机译:涉及昂贵黑盒目标和约束函数的大规模优化的随机径向基函数算法

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a new algorithm for derivative-free optimization of expensive black-box objective functions subject to expensive black-box inequality constraints. The proposed algorithm, called ConstrLMSRBF, uses radial basis function (RBF) surrogate models and is an extension of the Local Metric Stochastic RBF (LMSRBF) algorithm by Regis and Shoemaker (2007a) [1] that can handle black-box inequality constraints. Previous algorithms for the optimization of expensive functions using surrogate models have mostly dealt with bound constrained problems where only the objective function is expensive, and so, the surrogate models are used to approximate the objective function only. In contrast, ConstrLMSRBF builds RBF surrogate models for the objective function and also for all the constraint functions in each iteration, and uses these RBF models to guide the selection of the next point where the objective and constraint functions will be evaluated. Computational results indicate that ConstrLMSRBF is better than alternative methods on 9 out of 14 test problems and on the MOPTA08 problem from the automotive industry (Jones, 2008 [2]). The MOPTA08 problem has 124 decision variables and 68 inequality constraints and is considered a large-scale problem in the area of expensive black-box optimization. The alternative methods include a Mesh Adaptive Direct Search (MADS) algorithm (Abramson and Audet, 2006 [3J; Audet and Dennis, 2006 [4]) that uses a kriging-based surrogate model, the Multistart LMSRBF algorithm by Regis and Shoemaker (2007a) [1] modified to handle black-box constraints via a penalty approach, a genetic algorithm, a pattern search algorithm, a sequential quadratic programming algorithm, and COBYLA (Powell, 1994 [5]), which is a derivative-free trust-region algorithm. Based on the results of this study, the results in Jones (2008) [2] and other approaches presented at the 1SMP 2009 conference, ConstrLMSRBF appears to be among the best, if not the best, known algorithm for the MOPTA08 problem in the sense of providing the most improvement from an initial feasible solution within a very limited number of objective and constraint function evaluations.
机译:本文提出了一种新算法,用于不受昂贵黑箱不等式约束的昂贵黑箱目标函数的无导数优化。所提出的算法称为ConstrLMSRBF,它使用径向基函数(RBF)替代模型,并且是Regis和Shoemaker(2007a)[1]对局部度量随机RBF(LMSRBF)算法的扩展,可以处理黑盒不等式约束。以前使用代理模型优化昂贵函数的算法主要解决了约束约束问题,其中仅目标函数昂贵,因此,代理模型仅用于近似目标函数。相比之下,ConstrLMSRBF为目标函数以及每次迭代中的所有约束函数构建RBF替代模型,并使用这些RBF模型指导选择将评估目标函数和约束函数的下一个点。计算结果表明,对于14个测试问题中的9个以及汽车行业的MOPTA08问题,ConstrLMSRBF优于替代方法(Jones,2008 [2])。 MOPTA08问题具有124个决策变量和68个不等式约束,在昂贵的黑盒优化领域中被认为是一个大规模问题。替代方法包括使用基于克里格模型的代理模型的网格自适应直接搜索(MADS)算法(Abramson和Audet,2006 [3J; Audet和Dennis,2006 [4]),Regis和Shoemaker(2007a)的Multistart LMSRBF算法。 )[1]修改为通过惩罚方法,遗传算法,模式搜索算法,顺序二次规划算法和COBYLA处理黑盒约束(Powell,1994 [5]),这是一种无导数信任关系。区域算法。根据这项研究的结果,Jones(2008)[2]的结果以及在1SMP 2009大会上提出的其他方法,在某种意义上,ConstrLMSRBF似乎是已知的最佳MOPTA08问题算法,即使不是最好的算法在数量有限的目标和约束函数评估中,从初始可行的解决方案中获得最大的改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号