首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications
【24h】

An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications

机译:通过机器学习解决计算力学中偏微分方程的能量方法:概念,实现和应用

获取原文
获取原文并翻译 | 示例

摘要

Partial Differential Equations (PDEs) are fundamental to model different phenomena in science and engineering mathematically. Solving them is a crucial step towards a precise knowledge of the behavior of natural and engineered systems. In general, in order to solve PDEs that represent real systems to an acceptable degree, analytical methods are usually not enough. One has to resort to discretization methods. For engineering problems, probably the best-known option is the finite element method (FEM). However, powerful alternatives such as mesh-free methods and Isogeometric Analysis (IGA) are also available. The fundamental idea is to approximate the solution of the PDE by means of functions specifically built to have some desirable properties. In this contribution, we explore Deep Neural Networks (DNNs) as an option for approximation. They have shown impressive results in areas such as visual recognition. DNNs are regarded here as function approximation machines. There is great flexibility to define their structure and important advances in the architecture and the efficiency of the algorithms to implement them make DNNs a very interesting alternative to approximate the solution of a PDE. We concentrate on applications that have an interest for Computational Mechanics. Most contributions explore this possibility have adopted a collocation strategy. In this work, we concentrate on mechanical problems and analyze the energetic format of the PDE. The energy of a mechanical system seems to be the natural loss function for a machine learning method to approach a mechanical problem. In order to prove the concepts, we deal with several problems and explore the capabilities of the method for applications in engineering. (C) 2019 Elsevier B.V. All rights reserved.
机译:偏微分方程(PDE)是在数学上对科学和工程中的不同现象进行建模的基础。解决这些问题是精确了解自然和工程系统行为的关键一步。通常,为了将代表真实系统的PDE解析到可接受的程度,分析方法通常是不够的。一个必须诉诸离散化方法。对于工程问题,可能最有名的选择是有限元方法(FEM)。但是,也可以使用无网格方法和等几何分析(IGA)等强大的替代方法。基本思想是通过专门构建为具有某些所需属性的函数来近似PDE的解决方案。在此贡献中,我们探索了深度神经网络(DNN)作为近似选项。他们在视觉识别等领域取得了令人瞩目的成果。 DNN在这里被视为函数逼近机。定义它们的结构具有极大的灵活性,并且在体系结构中具有重要的进步,而实现它们的算法的效率使DNN成为近似PDE解决方案的非常有趣的替代方法。我们专注于对计算力学感兴趣的应用程序。大多数贡献者探索这种可能性都采用了搭配策略。在这项工作中,我们专注于机械问题并分析了PDE的能量格式。机械系统的能量似乎是机器学习方法解决机械问题的自然损失函数。为了证明这些概念,我们处理了几个问题并探索了该方法在工程应用中的功能。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号