首页> 外文学位 >Computational geometry techniques for two-dimensional and three-dimensional unstructured mesh generation with application to the solution of divergence form partial differential equations.
【24h】

Computational geometry techniques for two-dimensional and three-dimensional unstructured mesh generation with application to the solution of divergence form partial differential equations.

机译:用于二维和三维非结构化网格生成的计算几何技术及其在散度解中的应用,形成了偏微分方程。

获取原文
获取原文并翻译 | 示例

摘要

The numerical solution of partial differential equations requires an underlying network of computational points called a mesh. It is at these mesh points that all the physical variables are either known or solved for. The generation of this mesh has been, for too long, an ad hoc and painful procedure. The methods developed in this thesis go a long way toward simplifying the grid generation process.; This thesis develops new theoretical results in the field of computational geometry concerning the continuity of the Delaunay triangulation and the Voronoi diagram as functions of point placement. An identification theorem is introduced and an adaptive correction result in 2D is extended to 3D to allow for the existence of required features (edges in two dimensions; edges or triangles in three dimensions). The Delaunay and Voronoi tessellations are then used to automatically generate two and three dimensional unstructured grids. Graded triangulations in 2D and graded tetrahedralizations in 3D are developed by the introduction of weight values at the boundary points of the computational domain. Individual cell and local proximity metrics are described and combined to define a single measure to quantify mesh quality. Techniques are introduced to allow for mesh adaptation via local mesh refinement or local mesh coarsening. The control region discretization technique is described for a class of PDEs that naturally mates with the biorthogonal grids produced. Finally, results are shown to support the use of this gridding technique. Numerical solutions of divergence form PDEs discretized on the Delaunay-type unstructured grids are found and compared with known analytic results.
机译:偏微分方程的数值解需要一个称为网格的基础计算点网络。在这些网格点上,所有物理变量都是已知的或已求解的。长期以来,这种网格的生成一直是临时的且痛苦的过程。本文开发的方法在简化网格生成过程上还有很长的路要走。本文在计算几何学领域中提出了有关Delaunay三角剖分和Voronoi图作为点放置函数的连续性的新理论结果。引入了一个识别定理,并将2D中的自适应校正结果扩展到3D,以允许存在所需的特征(二维的边;三维的边或三角形)。然后使用Delaunay和Voronoi镶嵌自动生成二维和三维非结构化网格。通过在计算域的边界点引入权重值,可以开发2D中的分级三角剖分和3D中的分级四面体化。描述并组合了单个像元和局部接近度度量以定义单个度量以量化网格质量。引入了允许通过局部网格细化或局部网格粗化进行网格自适应的技术。针对一类与生成的双正交网格自然匹配的PDE,介绍了控制区域离散技术。最后,结果显示支持这种网格技术的使用。找到在Delaunay型非结构化网格上离散的PDE散度形式的数值解,并将其与已知的分析结果进行比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号