首页> 外文期刊>Communications in Nonlinear Science and Numerical Simulation >An exploratory study on machine learning to couple numerical solutions of partial differential equations
【24h】

An exploratory study on machine learning to couple numerical solutions of partial differential equations

机译:偏微分方程数值解的机器学习探索性研究

获取原文
获取原文并翻译 | 示例

摘要

As further progress in the accurate and efficient computation of coupled partial differential equations (PDEs) becomes increasingly difficult, it is highly desired to develop new methods for such computation. In deviation from traditional approaches, this short communication paper explores a computational paradigm that couples numerical solutions of PDEs via machine-learning (ML) based methods. Particularly, it solves PDEs in subdomains as in a conventional method but develops and trains artificial neural networks (ANN) to couple the PDEs at their interfaces, leading to their solutions in the whole domains. The concepts and algorithms for the ML coupling are discussed via computation of coupled Poisson equations and coupled advection-diffusion equations. Unlike in a conventional method, Schwarz iteration may not be necessary for the ML coupling in computation of the latter. Numerical examples show that the coupling can generate solutions to these equations with acceptable accuracy. They also illustrate that it exhibits predictability; ML algorithms trained with a set of initial and boundary conditions still work in computation when the conditions are modified. Although preliminary, this exploratory study indicates that the ML paradigm is promising in terms of feasibility and performance and deserves further research.(c) 2021 Elsevier B.V. All rights reserved.
机译:正如在耦合偏微分方程(PDE的)的准确和有效的计算的进一步进展变得越来越困难,强烈需要开发用于这种计算的新方法。在从传统的方法的偏差,这个短的通信文章探讨的计算范例,通过机器学习(ML)为基础的方法PDE的夫妇数值解。特别是,在他们的界面解决了偏微分方程子域作为常规方法,但开发和火车人工神经网络(ANN)耦合的偏微分方程,导致他们在整个域的解决方案。用于ML耦合的概念和算法经由耦合泊松方程和耦合对流扩散方程的计算讨论。不同于常规的方法,施瓦茨迭代可能没有针对ML在后者的计算耦合是必需的。数值例子表明,该耦合可以产生这些方程与可接受的准确度的解决方案。他们还说明了它具有可预测性;一组初始条件和边界条件的培训ML算法计算仍然工作在条件被修改。虽然是初步的,这种探索性研究表明,ML范式的可行性和性能方面有前途,值得进一步研究。版权所有(C)2021爱思唯尔B.V.所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号