首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >A nonlocal method for modeling interfaces: Numerical simulation of decohesion and sliding at grain boundaries
【24h】

A nonlocal method for modeling interfaces: Numerical simulation of decohesion and sliding at grain boundaries

机译:界面建模的非局部方法:晶粒间界的脱粘和滑动的数值模拟

获取原文
获取原文并翻译 | 示例

摘要

Understanding and modeling the interface behavior is an important task for predicting materials response in various applications. To formulate the behavior of an arbitrary interface, one needs to construct the relation between acting tractions and displacement jumps at the interface. In addition to capturing the correct physics of the interface, the so-called traction-separation relation must also be thermodynamically consistent and satisfy the basic balance laws. Apart from many attempts in the literature to address these issues, a new and simple method to capture the complex mechanical behavior at an arbitrary interface is proposed. The new formulation is based on introducing a new quantity called "traction density". As a result, the traction-separation relation for any arbitrary interface is automatically computed by integrating the traction density over the interface. The traction density can be formulated based on understandings and observations from lower scales. As will be shown, the mathematical representation of the traction density is relatively simple and therefore its consistency can be verified easily. When it comes to the grain boundary (GB) behavior, the proposed methodology is able to represent not only intergranular fracture but also grain boundary sliding. For calibration and verification of the model, molecular dynamics (MD) simulations for aluminum Sigma 5 GB are utilized. Interestingly, the calculations from current MD simulations show size-dependent behavior for the GB. By introducing a healing parameter in the new interface model, it is now possible to explain and predict possible GB size-dependent behavior. (C) 2020 Elsevier B.V. All rights reserved.
机译:了解和建模界面行为是预测各种应用中材料响应的一项重要任务。为了表达任意界面的行为,需要构造作用牵引力与界面处的位移跳跃之间的关系。除了捕获正确的界面物理特性外,所谓的牵引分离关系还必须在热力学上保持一致,并满足基本的平衡定律。除了文献中为解决这些问题的许多尝试之外,还提出了一种新的简单方法来捕获任意界面处的复杂机械行为。新的公式是基于引入称为“牵引密度”的新量的。结果,通过对界面上的牵引密度进行积分,可以自动计算任意界面的牵引分离关系。牵引密度可以根据对小比例尺的理解和观察得出。如将显示的,牵引密度的数学表示相对简单,因此可以容易地验证其一致性。当涉及晶界(GB)行为时,所提出的方法不仅能够代表晶间断裂,而且能够代表晶界滑动。为了校准和验证模型,使用了Sigma 5 GB铝的分子动力学(MD)模拟。有趣的是,当前MD模拟的计算结果显示了GB的大小相关行为。通过在新的接口模型中引入修复参数,现在可以解释和预测可能的与GB大小有关的行为。 (C)2020 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号