首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >The free surface effect on a chemotaxis-diffusion-convection coupling system
【24h】

The free surface effect on a chemotaxis-diffusion-convection coupling system

机译:自由表面对趋化-扩散-对流耦合系统的影响

获取原文
获取原文并翻译 | 示例

摘要

Suspension of an oxytactic bacteria (e.g. the species Bacillus subtilis) placed in a container with its upper surface open to the atmosphere results in the formation of complex bioconvection patterns. The bacteria consume the oxygen diluted in the water, thereby causing the decrease of oxygen concentration everywhere except on the free surface. Through the free surface, which is in direct contact with the air, oxygen diffuses into the water. Slightly denser than water, the oxytactic bacteria are able to swim towards the higher concentration of oxygen (i.e. upwards) and they concentrate in a thin layer below the free surface. This causes the change of the suspension density and Rayleigh-Taylor type instabilities to occur. The chemotaxis phenomenon has been successfully modeled within continuum mechanics approach under certain simplifications. The set of (non-linearly) coupled equations describing the process involves the Boussinesq approximation of the Navier-Stokes equations governing the fluid motion and two convection-diffusion type equations governing the bacteria and oxygen concentrations. One of the simplifications that might significantly influence numerical simulations is the boundary condition for fluid equation on the free surface. This condition ensures that the vertical component of the velocity is zero, thus keeping the position of free surface fixed. This assumption significantly simplifies numerical procedure since the non-linearly coupled system can then be solved on stationary grid. However, allowing the motion of the free surface and completing the system with appropriate boundary conditions on contact line (liquid-solid-gas interface), a more realistic model is derived and new insights on nonlinear dynamics of the chemotaxis phenomenon are obtained. Our aims in this paper are to upgrade the currently available model into a more realistic one in both two and three dimensions, to propose a numerical procedure to deal with the new system (now posed on time-dependent domain) and, finally, to show the difference between this new model and the previous simplified one. (C) 2019 Elsevier B. V. All rights reserved.
机译:悬浮在其上表面向大气敞开的容器中的氧合细菌(例如枯草芽孢杆菌种)的悬浮导致形成复杂的生物对流模式。细菌消耗在水中稀释的氧气,从而导致除自由表面之外的所有地方的氧气浓度降低。氧气通过与空气直接接触的自由表面扩散到水中。氧合细菌比水稍致密,能够游向较高浓度的氧气(即向上),并聚集在自由表面以下的薄层中。这导致悬浮密度的变化和瑞利泰勒类型不稳定性的发生。趋化现象已在某些简化下的连续力学方法中成功建模。描述该过程的(非线性)耦合方程组涉及控制流体运动的Navier-Stokes方程的Boussinesq逼近和控制细菌和氧气浓度的两个对流扩散型方程。可能对数值模拟产生重大影响的简化之一是自由表面上流体方程的边界条件。此条件确保速度的垂直分量为零,从而使自由表面的位置保持固定。由于可以在固定网格上求解非线性耦合系统,因此该假设大大简化了数值程序。但是,允许自由表面运动并在接触线上(液-固-气界面)上以适当的边界条件完善系统,可以得出更现实的模型,并且可以获得有关化学趋化现象的非线性动力学的新见解。我们在本文中的目的是将当前可用的模型在二维和三维上升级为更现实的模型,提出一种处理新系统的数值程序(现时依赖于时域),最后展示这种新模型与以前的简化模型之间的区别。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号