首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Topology optimization for energy dissipation design of lattice structures through snap-through behavior
【24h】

Topology optimization for energy dissipation design of lattice structures through snap-through behavior

机译:通过搭扣行为进行晶格结构能耗设计的拓扑优化

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Topology optimization for damping design of lattice structures is proposed in this work. Compared to metal lattice or viscoelastic materials, lattice structures made of soft materials composed of bi-stable elements show exceptional energy dissipation properties with fully recoverable capacity. Theoretical energy absorption capacity is a key concept to describe damping properties of architectured metamaterials, which reflects the maximum energy absorption per element if a bi-stable chain contains infinite buckling elements. To achieve extreme damping design, topology optimization algorithm is formulated to achieve extreme theoretical energy absorption capacity within a prescribed design domain. An approximate mathematical expression for the energy absorption capacity is formulated with rigorous derivation of sensitivities. Element strain energy in P-norm formulation is constrained at limit points to alleviate material softening failure under large strain. Four design cases are presented and discussed in detail. Results demonstrate that the optimal bi-stable elements achieved by topology optimization algorithm show programmable properties with desired energy dissipation capacity. (C) 2019 Elsevier B.V. All rights reserved.
机译:在这项工作中提出了阻尼优化设计的拓扑结构。与金属晶格或粘弹性材料相比,由双稳态元素组成的软质材料制成的晶格结构具有出色的能量耗散特性,并且具有完全可回收的容量。理论能量吸收能力是描述结构化超材料阻尼特性的关键概念,如果双稳态链包含无限屈曲元素,则该理论反映了每个元素的最大能量吸收。为了实现极限阻尼设计,制定了拓扑优化算法以在规定的设计域内实现极限理论能量吸收能力。能量吸收能力的近似数学表达式由灵敏度的严格推导得出。 P范数配方中的元素应变能被限制在极限点,以减轻大应变下材料的软化破坏。提出并详细讨论了四个设计案例。结果表明,通过拓扑优化算法获得的最佳双稳态元件具有所需的耗能能力,具有可编程的特性。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号