首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >A robust adaptive algebraic multigrid linear solver for structural mechanics
【24h】

A robust adaptive algebraic multigrid linear solver for structural mechanics

机译:结构力学的鲁棒自适应代数多网格线性求解器

获取原文
获取原文并翻译 | 示例

摘要

The numerical simulation of structural mechanics applications via finite elements usually requires the solution of large-size linear systems, especially when accurate results are sought for derived variables, like stress or deformation fields. Such a task represents the most time-consuming kernel, and motivates the development of robust and efficient linear solvers for these applications. On the one hand, direct solvers are robust and easy to use, but their computational complexity in the best scenario is superlinear, which limits applicability according to the problem size. On the other hand, iterative solvers, in particular those based on algebraic multigrid (AMG) preconditioners, can reach up to linear complexity, but require more knowledge from the user for an efficient setup, and convergence is not always guaranteed, especially in ill-conditioned problems. In this work, we present a novel AMG method specifically tailored for ill-conditioned structural problems. It is characterized by an adaptive factored sparse approximate inverse (aFSAI) method as smoother, an improved least-squared based prolongation (DPLS) and a method for uncovering the near-null space that takes advantage of an already existing approximation. The resulting linear solver has been applied in the solution of challenging linear systems arising from real-world linear elastic structural problems. Numerical experiments prove the efficiency and robustness of the method and show how, in several cases, the proposed algorithm outperforms state-of-the-art AMG linear solvers. Even more important, the results show how the proposed method gives good results even assuming a default setup, making it fully adoptable also for non-expert users and commercial software. (C) 2019 Elsevier B.Y. All rights reserved.
机译:通过有限元进行结构力学应用的数值模拟通常需要求解大型线性系统,尤其是在寻找派生变量(如应力或变形场)的精确结果时。此类任务代表了最耗时的内核,并激发了针对这些应用程序的健壮高效的线性求解器的开发。一方面,直接求解器功能强大且易于使用,但在最佳情况下其计算复杂度是超线性的,这会根据问题的大小限制其适用性。另一方面,迭代求解器,尤其是基于代数多重网格(AMG)预处理器的迭代求解器,可以达到线性复杂度,但是需要用户提供更多知识以进行有效设置,并且不一定总是保证收敛性,尤其是在疾病较重的情况下。有条件的问题。在这项工作中,我们提出了一种新的AMG方法,专门针对病态结构问题量身定制。它的特点是自适应因子稀疏近似逆(aFSAI)方法更加平滑,改进的基于最小二乘的延伸(DPLS)和一种利用已经存在的近似来揭示近零空间的方法。所得的线性求解器已应用于解决由实际线性弹性结构问题引起的具有挑战性的线性系统。数值实验证明了该方法的有效性和鲁棒性,并说明了在某些情况下所提出的算法如何优于最新的AMG线性求解器。更为重要的是,结果表明,即使假设采用默认设置,建议的方法也能提供良好的结果,从而使其也完全适用于非专业用户和商业软件。 (C)2019 Elsevier B.Y.版权所有。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号