首页> 美国卫生研究院文献>other >Anatomically accurate high resolution modeling of human whole heart electromechanics: A strongly scalable algebraic multigrid solver method for nonlinear deformation
【2h】

Anatomically accurate high resolution modeling of human whole heart electromechanics: A strongly scalable algebraic multigrid solver method for nonlinear deformation

机译:人类全心脏机电的解剖学精确高分辨率建模:一种用于非线性变形的强可扩展代数多重网格求解器方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Electromechanical (EM) models of the heart have been used successfully to study fundamental mechanisms underlying a heart beat in health and disease. However, in all modeling studies reported so far numerous simplifications were made in terms of representing biophysical details of cellular function and its heterogeneity, gross anatomy and tissue microstructure, as well as the bidirectional coupling between electrophysiology (EP) and tissue distension. One limiting factor is the employed spatial discretization methods which are not sufficiently flexible to accommodate complex geometries or resolve heterogeneities, but, even more importantly, the limited efficiency of the prevailing solver techniques which are not sufficiently scalable to deal with the incurring increase in degrees of freedom (DOF) when modeling cardiac electromechanics at high spatio-temporal resolution.This study reports on the development of a novel methodology for solving the nonlinear equation of finite elasticity using human whole organ models of cardiac electromechanics, discretized at a high para-cellular resolution. Three patient-specific, anatomically accurate, whole heart EM models were reconstructed from magnetic resonance (MR) scans at resolutions of 220 μm, 440 μm and 880 μm, yielding meshes of approximately 184.6, 24.4 and 3.7 million tetrahedral elements and 95.9, 13.2 and 2.1 million displacement DOF, respectively. The same mesh was used for discretizing the governing equations of both electrophysiology (EP) and nonlinear elasticity. A novel algebraic multigrid (AMG) preconditioner for an iterative Krylov solver was developed to deal with the resulting computational load. The AMG preconditioner was designed under the primary objective of achieving favorable strong scaling characteristics for both setup and solution runtimes, as this is key for exploiting current high performance computing hardware.Benchmark results using the 220 μm, 440 μm and 880 μm meshes demonstrate efficient scaling up to 1024, 4096 and 8192 compute cores which allowed the simulation of a single heart beat in 44.3, 87.8 and 235.3 minutes, respectively. The efficiency of the method allows fast simulation cycles without compromising anatomical or biophysical detail.
机译:心脏的机电(EM)模型已成功用于研究健康和疾病中心脏跳动的基本机制。但是,迄今为止,在所有建模研究中,在表示细胞功能及其异质性,总体解剖结构和组织微结构以及电生理学(EP)与组织扩张之间的双向耦合的生物物理细节方面,都进行了大量简化。一个局限性因素是所采用的空间离散化方法,这种方法不够灵活,无法适应复杂的几何形状或解决异构问题,但是,更重要的是,现有求解器技术的效率有限,其扩展性不足,无法应对随之而来的度数增加问题。自由度(DOF)在高时空分辨率下对心脏机电模型进行建模。这项研究报告了一种新的方法的开发,该方法使用了人体电磁力学的全器官模型来求解有限弹性的非线性方程,并在旁细胞高分辨率下离散化了。 。通过磁共振(MR)扫描以220μm,440μm和880μm的分辨率重建了三个特定于患者的,解剖学上准确的全心脏EM模型,生成的网格大约为184.6、24.4和370万个四面体元素以及95.9、13.2和自由度分别为210万。使用相同的网格离散化电生理学(EP)和非线性弹性的控制方程。开发了一种新颖的代数多重网格(AMG)预处理器,用于迭代Krylov求解器,以处理由此产生的计算负荷。 AMG预调节器的设计主要目标是为设置和解决方案运行时实现良好的强大缩放特性,因为这是开发当前高性能计算硬件的关键。使用220μm,440μm和880μm网格进行基准测试结果证明了有效的缩放多达1024、4096和8192个计算核心,分别允许在44.3、87.8和235.3分钟内模拟单个心跳。该方法的效率允许快速的仿真周期,而不会影响解剖或生物物理细节。

著录项

相似文献

  • 外文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号