首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Convergence analysis of mixed finite element approximations to shape gradients in the Stokes equation
【24h】

Convergence analysis of mixed finite element approximations to shape gradients in the Stokes equation

机译:Stokes方程中混合有限元逼近形状梯度的收敛性分析

获取原文
获取原文并翻译 | 示例

摘要

Eulerian derivatives of shape functionals in shape optimization can be written in two formulations of boundary and volume integrals. The former is widely used in shape gradient descent algorithms. The latter holds more generally, although rarely being used numerically in literature. For shape functionals governed by the Stokes equation, we consider the mixed finite element approximations to the two types of shape gradients from corresponding Eulerian derivatives. The standard MINI and Taylor-Hood elements are employed to discretize the state equation, its adjoint and the resulting shape gradients. We present thorough convergence analysis with a priori error estimates for the two approximate shape gradients. The theoretical analysis shows that the volume integral formula has superconvergence property. Numerical results are presented to verify the theory and show that the volume formulation is more accurate. (C) 2018 Elsevier B.V. All rights reserved.
机译:形状优化中形状函数的欧拉导数可以用边界和体积积分的两种公式表示。前者广泛用于形状梯度下降算法中。后者更普遍,尽管在文献中很少在数字上使用。对于由Stokes方程控制的形状函数,我们考虑了从对应的欧拉导数到两种形状梯度的混合有限元逼近。标准的MINI和Taylor-Hood元素用于离散状态方程,其伴随关系以及由此产生的形状梯度。我们提出了针对两个近似形状梯度的先验误差估计的全面收敛分析。理论分析表明,体积积分公式具有超收敛性。数值结果证明了该理论的有效性,并表明体积公式更为准确。 (C)2018 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号