首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Large-scale stochastic topology optimization using adaptive mesh refinement and coarsening through a two-level parallelization scheme
【24h】

Large-scale stochastic topology optimization using adaptive mesh refinement and coarsening through a two-level parallelization scheme

机译:使用自适应网格细化和通过两级并行化方案进行粗化的大规模随机拓扑优化

获取原文
获取原文并翻译 | 示例

摘要

Topology optimization under uncertainty of large-scale continuum structures is a computational challenge due to the combination of large finite element models and uncertainty propagation methods. The former aims to address the ever-increasing complexity of more and more realistic models, whereas the latter is required to estimate the statistical metrics of the formulation. In this work, the computational burden of the problem is addressed using a sparse grid stochastic collocation method, to calculate the statistical metrics of the topology optimization under uncertainty formulation, and a parallel adaptive mesh refinement method, to efficiently solve each of the stochastic collocation nodes. A two-level parallel processing scheme (TOUU-PS2) is proposed to profit from parallel computation on distributed memory systems: the stochastic nodes are distributed through the distributed memory system, and the efficient computation of each stochastic node is performed partitioning the problem using a domain decomposition strategy and solving each subdomain using an adaptive mesh refinement method. A dynamic load-balancing strategy is used to balance the workload between subdomains, and thus increasing the parallel performance by reducing processor idle time. The topology optimization problem is addressed using the topological derivative concept in combination with a level-set method. The performance and scalability of the proposed methodology are evaluated using several numerical benchmarks and real-world applications, showing good performance and scalability up to thousands of processors. (C) 2018 Elsevier B.V. All rights reserved.
机译:由于大型有限元模型和不确定性传播方法的结合,大规模连续体结构不确定性下的拓扑优化是一个计算难题。前者旨在解决越来越现实的模型日益复杂的问题,而后者则需要估算配方的统计指标。在这项工作中,使用稀疏网格随机搭配方法解决问题的计算负担,以不确定性公式计算拓扑优化的统计指标,并采用并行自适应网格细化方法,以有效地解决每个随机搭配节点。提出了一种两级并行处理方案(TOUU-PS2),以从分布式存储系统上的并行计算中获利:随机节点通过分布式存储系统进行分布,并且每个随机节点的有效计算通过使用区域分解策略,并使用自适应网格细化方法求解每个子域。动态负载平衡策略用于平衡子域之间的工作负载,从而通过减少处理器空闲时间来提高并行性能。拓扑优化问题是使用拓扑导数概念结合水平集方法来解决的。所提出的方法的性能和可伸缩性使用几个数字基准和实际应用程序进行了评估,显示出高达数千个处理器的良好性能和可伸缩性。 (C)2018 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号