首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Non-overlapping domain decomposition solution schemes for structural mechanics isogeometric analysis
【24h】

Non-overlapping domain decomposition solution schemes for structural mechanics isogeometric analysis

机译:结构力学等几何分析的非重叠域分解求解方案

获取原文
获取原文并翻译 | 示例

摘要

Isogeometric analysis (IGA) is a novel computer aided engineering technique that addresses diverse problems in computational mechanics [1 -4], all under the exact geometric representation. Apart from the exact geometric representation, the high continuity of IGA shape functions enhances the accuracy and robustness of the method. However, the price to pay is that the resulting matrices are denser, with increased bandwidth and overlapping which make the solution of large-scale problems more computationally intensive. As a result, effective solution techniques are still considered an open issue for further research. In this paper, an innovative family of solution schemes based on domain decomposition methods (DDM) is proposed, that significantly reduces the computational cost. Specifically, the solution of the global system is performed with the preconditioned conjugate gradient algorithm (PCG) whose preconditioning step is evaluated with a dual DDM where special care is taken to avoid the overlapped subdomains which are inherent in decomposed IGA formulation due to the increased continuity of the shape functions. (C) 2018 Elsevier B.Y. All rights reserved.
机译:等角线分析(IGA)是一种新颖的计算机辅助工程技术,可以在精确的几何表示形式下解决计算力学中的各种问题[1-4]。除了精确的几何表示,IGA形状函数的高连续性还增强了该方法的准确性和鲁棒性。但是,要付出的代价是所得矩阵更密集,带宽增加和重叠,这使得大规模问题的解决方案在计算上更加密集。结果,有效的解决方案技术仍然被认为是有待进一步研究的一个开放课题。本文提出了一种创新的基于域分解方法(DDM)的解决方案系列,可显着降低计算成本。具体而言,全局系统的解决方案是使用预处理共轭梯度算法(PCG)进行的,该算法的预处理步骤是通过双DDM进行评估的,其中要特别注意避免由于增加的连续性而在分解IGA公式中固有的重叠子域形状函数。 (C)2018年Elsevier B.Y.版权所有。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号