首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >An improved method for fuzzy-interval uncertainty analysis and its application in brake instability study
【24h】

An improved method for fuzzy-interval uncertainty analysis and its application in brake instability study

机译:模糊区间不确定性分析的改进方法及其在制动不稳定性研究中的应用

获取原文
获取原文并翻译 | 示例

摘要

Most of the existing methods of brake squeal instability analysis are merely available to handle single type of uncertain case. In this study, an improved unified method is developed for uncertainty quantification, which is capable of handling two types of fuzzy-interval cases. In the first fuzzy-interval case, uncertain parameters of engineering structures are assumed as either fuzzy variables or interval variables, which exist in structures simultaneously and independently. In the second fuzzy-interval case, all uncertain parameters are represented by interval variables, but their lower and upper bounds just can be expressed as fuzzy variables instead of deterministic values. In the proposed method, fuzzy-boundary interval variables are introduced to handle fuzzy-interval uncertainties, and based on which an improved response analysis model is established. In the improved model, the fuzzy-boundary interval variables are firstly converted into interval-boundary variables by level-cut technique. Then by temporarily neglecting boundary uncertainties, the initial interval responses can be approximated via conducting once Taylor series expansion and subinterval analysis. Next, Taylor series expansion and central difference method are combined twice to deal with boundary uncertainties, and the interval responses of the structures with interval-boundary variables are yielded. Finally, the fuzzy-interval responses of the structures are derived on the basis of interval union operation and fuzzy decomposition theorem. The improved method is subsequently extended to quantify the uncertainties in brake squeal instability analysis involving two types of fuzzy- interval uncertainties. The effectiveness of the proposed method on tackling fuzzy-interval problems is demonstrated by numerical examples. (C) 2018 Elsevier B.V. All rights reserved.
机译:现有的大多数制动尖叫不稳定性分析方法仅可用于处理单一类型的不确定情况。在这项研究中,开发了一种改进的用于不确定度量化的统一方法,该方法能够处理两种类型的模糊区间情况。在第一种模糊区间情况下,工程结构的不确定参数被假定为模糊变量或区间变量,它们同时并独立地存在于结构中。在第二个模糊区间情况下,所有不确定参数都由区间变量表示,但它们的上下限只能表示为模糊变量,而不是确定性值。该方法引入模糊边界区间变量处理模糊区间不确定性,并在此基础上建立了改进的响应分析模型。在改进的模型中,首先通过水平割技术将模糊边界区间变量转换为区间边界变量。然后,通过暂时忽略边界不确定性,可以通过执行一次泰勒级数展开和子区间分析来近似初始间隔响应。接下来,将泰勒级数展开法和中心差分法组合两次以处理边界不确定性,并得出具有区间边界变量的结构的区间响应。最后,基于区间联合运算和模糊分解定理,推导了结构的模糊区间响应。随后将改进的方法扩展到量化涉及两种模糊区间不确定性的制动尖叫不稳定性分析中的不确定性。数值算例证明了该方法在解决模糊区间问题上的有效性。 (C)2018 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号