首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Forward and inverse structural uncertainty propagations under stochastic variables with arbitrary probability distributions
【24h】

Forward and inverse structural uncertainty propagations under stochastic variables with arbitrary probability distributions

机译:具有任意概率分布的随机变量下的结构正反不确定性传播

获取原文
获取原文并翻译 | 示例

摘要

In this study, a general frame of the forward and inverse structural uncertainty propagations (UPs) based on the dimension reduction (DR) method and the derivative lambda probability density function (lambda-PDF) is proposed to handle arbitrary probability distribution. For the forward UP, a DR method is applied to decompose a multivariable system into multiple univariate subsystems and a derivative lambda-PDF is adopted to transform the arbitrary probability distribution of each subsystem. Then, the statistical moments and a fitting region are mathematically derived to analyze the fitting ability of the derivative lambda-PDF. According to whether the kurtosis-skewness point lies in or out the fitting region, two different strategies combining the Gauss-Gegenbauer quadrature are proposed to implement the forward propagation. Compared with the conventional methods, the proposed method has advantages in higher accuracy, stability and efficiency. For the inverse propagation, because the unknown variable may be arbitrary distribution, the general frame based on the derivative lambda-PDF and the Gauss-Gegenbauer quadrature are utilized to convert the uncertainty propagation into multiple deterministic calculations. Based on this, optimization method is adopted to accurately obtain the statistical moments and PDFs of the unknown stochastic variables. Five examples are provided to verify the accuracy and efficiency of the proposed general frame for the forward and inverse UPs. (C) 2018 Elsevier B.Y. All rights reserved.
机译:在这项研究中,提出了基于降维(DR)方法和导数λ概率密度函数(lambda-PDF)的正向和反向结构不确定性传播(UPs)的通用框架,以处理任意概率分布。对于前向UP,应用DR方法将多变量系统分解为多个单变量子系统,并采用导数lambda-PDF转换每个子系统的任意概率分布。然后,通过数学推导得出统计矩和拟合区域,以分析导数lambda-PDF的拟合能力。根据峰度-偏度点是在拟合区域内还是在拟合区域外,提出了两种结合高斯-格根鲍尔正交的不同策略来实现正向传播。与常规方法相比,该方法具有较高的准确性,稳定性和效率。对于逆传播,由于未知变量可能是任意分布,因此利用基于导数lambda-PDF和Gauss-Gegenbauer正交的通用框架将不确定性传播转换为多个确定性计算。在此基础上,采用优化方法来准确获得未知随机变量的统计矩和PDF。提供了五个示例,以验证所提出的正向和反向UP通用框架的准确性和效率。 (C)2018年Elsevier B.Y.版权所有。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号