首页> 外文期刊>Computer Languages, Systems & Structures >A scalable model based approach for data model evolution: Application to space missions data models
【24h】

A scalable model based approach for data model evolution: Application to space missions data models

机译:基于可伸缩模型的数据模型演化方法:应用于太空任务数据模型

获取原文
获取原文并翻译 | 示例

摘要

During the development of a complex system, data models are the key to a successful engineering process, as they contain and organize all the information manipulated by the different functions involved in the design of the system. Moreover, these data models evolve throughout the design, as the development raises issues that have to be solved through a restructuration of data organization. But any such data model evolution has a deep impact on the functions that have already being defined.Recent research tries to deal with this issue by studying how complex industrial data models evolve from one version to another and how their data instances co-evolve. Complexity and scalability issues make this problem a major scientific challenge, leading to huge gains in development efficiency. This problem is of particular interest in the field of aeronautics and space systems. Indeed, the development of these systems produces many complex data models associated to the designed systems and/or to the systems under design, hence on the one hand data models are available. On the other hand, it is well known that these systems are developed in the context of collaborative projects that may last for decades. In such projects, specifications together with the associated data models are bound to evolve and engineering processes shall take into account this evolution.Our work addresses the problem of data model evolution in a model-driven engineering setting. We focus on minimizing the impact of model evolution on the system development processes in the specific context on the space engineering area, where data models may involve thousands of concepts and relationships, and we investigate the performance of the model-based development (MBD) approach we propose for data model evolution over two space missions, namely PHARAO and MICROSCOPE.
机译:在复杂系统的开发过程中,数据模型是成功进行工程设计的关键,因为它们包含并组织了系统设计中涉及的不同功能所操纵的所有信息。此外,这些数据模型会在整个设计中不断发展,因为开发过程中出现了必须通过重组数据组织来解决的问题。但是任何这样的数据模型演化都会对已经定义的功能产生深远的影响。最近的研究试图通过研究复杂的工业数据模型如何从一个版本演化到另一个版本以及它们的数据实例如何共同演化来解决这个问题。复杂性和可伸缩性问题使此问题成为主要的科学挑战,从而导致开发效率的巨大提高。这个问题在航空和航天系统领域尤为重要。实际上,这些系统的开发会产生许多与设计的系统和/或正在设计的系统相关联的复杂数据模型,因此,一方面可以使用数据模型。另一方面,众所周知,这些系统是在可能持续数十年的协作项目的背景下开发的。在这样的项目中,规范以及相关的数据模型势必会发展,工程流程必须考虑到这种发展。我们的工作解决了在模型驱动的工程环境中数据模型发展的问题。我们致力于在空间工程领域(其中数据模型可能涉及成千上万个概念和关系)的特定上下文中,最小化模型演化对系统开发过程的影响,并且我们研究基于模型的开发(MBD)方法的性能我们建议通过两个太空任务,即法老和微型太空望远镜进行数据模型演化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号