首页> 外文期刊>IEEE Computer Graphics and Applications >Geometric continuity of parametric curves: constructions of geometrically continuous splines
【24h】

Geometric continuity of parametric curves: constructions of geometrically continuous splines

机译:参数曲线的几何连续性:几何连续样条线的构造

获取原文
获取原文并翻译 | 示例

摘要

Some observations are made concerning the source and nature of shape parameters. It is then described how Bezier curve segments can be stitched together with G/sup 1/ or G/sup 2/ continuity, using geometric constructions. These constructions lead to the development of geometric constructions for quadratic G/sup 1/ and cubic G/sup 2/ Beta-splines. A geometrically continuous subclass of Catmull-Rom splines based on geometric continuity and possessing shape parameters is discussed.
机译:对形状参数的来源和性质进行了一些观察。然后描述了如何使用几何构造将Bezier曲线段与G / sup 1 /或G / sup 2 /连续性缝合在一起。这些构造导致二次G / sup 1 /和三次G / sup 2 / Beta样条曲线的几何构造的发展。讨论了基于几何连续性并具有形状参数的Catmull-Rom花键的几何连续子类。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号