首页> 外文期刊>IEEE Computer Graphics and Applications >Geometric algebra: a computational framework for geometrical applications. 2
【24h】

Geometric algebra: a computational framework for geometrical applications. 2

机译:几何代数:几何应用的计算框架。 2

获取原文
获取原文并翻译 | 示例

摘要

Every vector space with an inner product has a geometric algebra, whether or not you choose to use it. This article shows how to call on this structure to define common geometrical constructs, ensuring a consistent computational framework. The goal is to show you that this can be done and that it is compact, directly computational, and transcends the dimensionality of subspaces. We do not use geometric algebra to develop new algorithms for graphics, but hope to demonstrate that one can automatically take care of some of the lower level algorithmic aspects, without tricks, exceptions, or hidden degenerate cases by using geometric algebra as a language.
机译:无论您是否选择使用内积,每个带有内积的向量空间都有一个几何代数。本文介绍如何调用此结构来定义常见的几何构造,从而确保一致的计算框架。目的是向您展示这是可以做到的,它是紧凑的,直接计算的,并且可以超越子空间的维数。我们不使用几何代数来开发用于图形的新算法,而是希望证明使用几何代数作为一种语言,可以自动处理一些较低级别的算法方面,而无需技巧,异常或隐藏的退化情况。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号