首页> 外文期刊>Computer Graphics and Applications, IEEE >Increasing Scientific Data Insights about Exascale Class Simulations under Power and Storage Constraints
【24h】

Increasing Scientific Data Insights about Exascale Class Simulations under Power and Storage Constraints

机译:在电源和存储约束下,有关百亿亿美元级仿真的科学数据见解越来越多

获取原文
获取原文并翻译 | 示例

摘要

Creating the next-generation high-performance simulation and analysis environment will be a significant challenge because of power and storage technology trends. Responding to these challenges will require rethinking and reframing how we approach visualization and analysis. A key difference is the need to keep track of a cost per insight in terms of power and storage used. To reduce power and storage costs, an emerging community consensus is that significantly more visualization and analysis should occur in situ--that is, during the simulation run while the data is resident in memory. Using this approach, we need to consider what scientific insights are sought, balanced by power and storage constraints, and then output only the minimal analysis data needed during the simulation run. Emerging research challenges include exploring what types of analysis questions can be answered during postprocessing with compact data products that are generated in situ and what mathematical or statistical techniques will best support this process.
机译:由于电源和存储技术的发展趋势,创建下一代高性能仿真和分析环境将是一项重大挑战。应对这些挑战将需要重新思考和重新定义我们如何进行可视化和分析。一个关键的区别是需要跟踪每一次洞察力在功耗和存储方面的成本。为了降低电源和存储成本,新兴的社区共识是应在原位进行更多的可视化和分析,即在模拟运行期间将数据驻留在内存中。使用这种方法,我们需要考虑寻求哪些科学见解,并在功率和存储约束条件之间取得平衡,然后仅输出仿真运行期间所需的最少分析数据。新兴的研究挑战包括探索在后处理过程中使用现场生成的紧凑数据产品可以回答哪些类型的分析问题,以及哪种数学或统计技术将最好地支持这一过程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号