首页> 外文期刊>IEEE Computer Graphics and Applications >Uncertainty-Aware Visualization for Analyzing Heterogeneous Wildfire Detections
【24h】

Uncertainty-Aware Visualization for Analyzing Heterogeneous Wildfire Detections

机译:不确定性可视化,用于分析异构野火检测

获取原文
获取原文并翻译 | 示例

摘要

There is growing interest in using data science techniques to characterize and predict natural disasters and extreme weather events. Such techniques merge noisy data gathered in the real world, from sources such as satellite detections, with algorithms that strongly depend on the noise, resolution, and uncertainty in these data. In this study, we present a visualization approach for interpolating multiresolution, uncertain satellite detections of wildfires into intuitive visual representations. We use extrinsic, intrinsic, coincident, and adjacent uncertainty representations as appropriate for understanding the information at each stage. To demonstrate our approach, we use our framework to tune two different algorithms for characterizing satellite detections of wildfires.
机译:人们越来越关注使用数据科学技术来表征和预测自然灾害和极端天气事件。此类技术将在现实世界中从卫星检测等来源收集到的嘈杂数据与严重依赖于这些数据中的噪声,分辨率和不确定性的算法合并在一起。在这项研究中,我们提出了一种可视化方法,可将野火的多分辨率,不确定卫星检测值插值为直观的视觉表示。我们使用外在,内在,一致和相邻的不确定性表示形式来适当地理解每个阶段的信息。为了演示我们的方法,我们使用我们的框架来调整两种不同的算法,以表征野火的卫星检测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号