首页> 外文期刊>Computer Communications >A deep learning based non-intrusive household load identification for smart grid in China
【24h】

A deep learning based non-intrusive household load identification for smart grid in China

机译:基于深度学习的中国智能电网的非侵入性家庭载荷识别

获取原文
获取原文并翻译 | 示例

摘要

Load identification have shown significant performance gains in Chinese smart grids. Most existing load identification algorithms are based on electrical characteristics of a steady or transient state, which are therefore limited by feature selection and analysing pattern. To address the above issues, this paper proposes the use of the deep neural network for load identification in a Non-Intrusive Load Monitoring (NILM) test-bed, which is set up by introducing diversified household appliances with different load characteristics, to collect the real-time power usage of appliances in a typical Chinese home. The collected load dataset are then sampled, preprocessed and input to the CNN-LSTM framework for training and features extraction. Next, according to several experiments, the structure of our CNN-LSTM network is determined with reasonable hyper-parameters initialised. Numerical results show that our model is superior to the k-NN, SVM, LSTM and CNN load identification methods, with the average recognition accuracy of 99%, across different kinds of appliances enabled in the typical power grid in China.
机译:负载识别显示了中国智能电网的显着性能。大多数现有的负载识别算法基于稳定或瞬态状态的电特性,因此由特征选择和分析模式限制。为了解决上述问题,本文提出了在非侵入式负荷监测(尼尔)测试床中使用深度神经网络进行负载识别,这是通过引入具有不同负载特性的多样化家用电器来实现的典型的中国家庭家用电器的实时电力使用。然后将收集的负载数据集采样,预处理和输入到CNN-LSTM框架以进行培训和特征提取。接下来,根据几个实验,我们的CNN-LSTM网络的结构是用初始化的合理超参数确定的。数值结果表明,我们的型号优于K-NN,SVM,LSTM和CNN负载识别方法,平均识别精度为99%,在中国典型电网中的不同各种电器。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号