首页> 外文期刊>Computer Communications >More than topology: Joint topology and attribute sampling and generation of social network graphs
【24h】

More than topology: Joint topology and attribute sampling and generation of social network graphs

机译:不仅仅是拓扑:联合拓扑和属性采样以及社交网络图的生成

获取原文
获取原文并翻译 | 示例

摘要

Graph sampling refers to the process of deriving a small subset of nodes from a possibly huge graph in order to estimate properties of the whole graph from examining the sample. Whereas topological properties can already be obtained accurately by sampling, current approaches do not take possibly hidden dependencies between node topology and attributes into account. Especially in the context of online social networks, node attributes are of importance as they correspond to properties of the social network's users. Therefore, existing sampling algorithms can be extended to attribute sampling, but still lack the capturing of structural properties. Analyzing topology (e.g., node degree and clustering coefficient) and attribute properties (e.g., age and location) jointly can provide valuable insights into the social network and allows for a better understanding of social processes. As major contribution, this work proposes a novel sampling algorithm which provides unbiased and reliable estimates of joint topological and attribute based graph properties in a resource efficient fashion. Furthermore, the obtained samples allow for the generation of synthetic graphs, which show high similarity to the original graph with respect to topology and attributes. The proposed sampling and generation algorithms are evaluated on real world social network graphs, for which they demonstrate to be effective. (C) 2015 Elsevier B.V. All rights reserved.
机译:图采样是指从可能巨大的图中派生一小部分节点的过程,以便通过检查样本来估计整个图的属性。尽管已经可以通过采样准确地获得拓扑属性,但是当前方法并未考虑节点拓扑和属性之间可能隐藏的依赖关系。特别是在在线社交网络中,节点属性非常重要,因为它们对应于社交网络用户的属性。因此,现有的采样算法可以扩展到属性采样,但是仍然缺乏结构属性的捕获。联合分析拓扑结构(例如,节点度和聚类系数)和属性属性(例如,年龄和位置)可以提供对社交网络的宝贵见解,并可以更好地理解社交过程。作为主要贡献,这项工作提出了一种新颖的采样算法,该算法以资源有效的方式提供了对联合拓扑和基于属性的图属性的无偏且可靠的估计。此外,获得的样本允许生成合成图,这些合成图在拓扑和属性方面与原始图具有高度相似性。所提出的采样和生成算法在现实世界的社交网络图上进行了评估,证明它们是有效的。 (C)2015 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号