首页> 外文期刊>Signal processing >Graphical network and topology estimation for autoregressive models using Gibbs sampling
【24h】

Graphical network and topology estimation for autoregressive models using Gibbs sampling

机译:使用Gibbs采样自回归模型的图形网络和拓扑估算

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose novel strategies based on Gibbs sampling for the estimation of the coefficients and topology of a graphical network represented by a first-order vector autoregressive model. As the topology and the coefficients are closely related, obtaining their Markov chains together is a nontrivial task. When incorporating both in a Gibbs-based sampler, the topology samples at each iteration are decisive factors in how information for the corresponding coefficient samples is propagated. We propose new Gibbs-based samplers that differ in the sampling strategies and scanning order used for their operation. We ran a series of experiments on simulated data to analyze and compare the samplers' performances with dimension of data, data size, and choice of prior. The best performing sampler was also applied to real data related to a financial network. Converged Markov chains of coefficient and topology elements of the network attest to the method's validity, and plots illustrating posterior distributions of the predicted data against the observed data indicate promising inference for real data applications.
机译:在本文中,我们提出了基于GIBBS采样的新策略,用于估计一阶向量自回归模型所代表的图形网络的系数和拓扑结构。随着拓扑和系数密切相关,将其马尔可夫链接在一起是一种非活动任务。当在基于GIBBS的采样器中结合时,每次迭代时的拓扑样本是如何传播相应系数样本的信息的决定性因素。我们提出了新的基于GIBBS的采样器,这些采样器在采样策略和用于其操作的扫描顺序中不同。我们在模拟数据上运行了一系列实验,以分析和比较采样器的性能,以数据的维度,数据大小和先前的选择。最好的执行采样器也应用于与金融网络相关的真实数据。融合的Markov链条的系数和拓扑元件的网络的拓扑元素证明了方法的有效性,并且说明对观察到的数据的预测数据的后部分布的曲线表明真实数据应用的有望推论。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号