首页> 外文期刊>Computer architecture news >A Configurable Architecture for Sparse LU Decomposition on Matrices with Arbitrary Patterns
【24h】

A Configurable Architecture for Sparse LU Decomposition on Matrices with Arbitrary Patterns

机译:具有任意模式的矩阵的稀疏LU分解的可配置体系结构

获取原文
获取原文并翻译 | 示例

摘要

Sparse LU decomposition has been widely used to solve sparse linear systems of equations found in many scientific and engineering applications, such as circuit simulation, power system modeling and computer vision. However, it is considered a computationally expensive factorization tool. While parallel implementations have been explored to accelerate sparse LU decomposition, irregular sparsity patterns often limit their performance gains. Prior FPGA-based accelerators have been customized to domain-specific sparsity patterns of pre-ordered symmetric matrices. In this paper, we present an efficient architecture for sparse LU decomposition that supports both symmetric and asymmetric sparse matrices with arbitrary sparsity patterns. The control structure of our architecture parallelizes computation and pivoting operations. Also, on-chip resource utilization is configured based on properties of the matrices being processed. Our experimental results show a 1.6 to 14x speedup over an optimized software implementation for benchmarks containing a wide range of sparsity patterns.
机译:稀疏LU分解已广泛用于求解稀疏线性方程组,这些方程组在许多科学和工程应用中都可以找到,例如电路仿真,电力系统建模和计算机视觉。但是,它被认为是计算上昂贵的因式分解工具。虽然已经探索了并行实现以加速稀疏LU分解,但不规则的稀疏模式通常会限制其性能提升。现有的基于FPGA的加速器已针对预定义的对称矩阵的特定于域的稀疏模式进行了定制。在本文中,我们提出了一种有效的稀疏LU分解体系结构,该体系结构支持具有任意稀疏模式的对称和非对称稀疏矩阵。我们架构的控制结构使计算和数据透视操作并行化。而且,基于正在处理的矩阵的属性来配置片上资源利用。我们的实验结果表明,针对包含多种稀疏模式的基准,优化软件实现了1.6至14倍的加速。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号