首页> 外文期刊>Computers & mathematics with applications >Randomized LU decomposition using sparse projections
【24h】

Randomized LU decomposition using sparse projections

机译:使用稀疏投影的随机LU分解

获取原文
获取原文并翻译 | 示例

摘要

A fast algorithm that approximates a low rank LU decomposition is presented. In order to achieve a low complexity, the algorithm uses sparse random projections combined with FFT-based random projections. The asymptotic approximation error of the algorithm is analyzed and a theoretical error bound is presented. Finally, numerical examples illustrate that for a similar approximation error, the sparse LU algorithm is faster than recent state-of-the-art methods. The algorithm is completely parallelizable and can fully run on a GPU. The performance is tested on a GPU card showing a significant speed-up improvement in the running time in comparison to a sequential execution. (C) 2016 Elsevier Ltd. All rights reserved.
机译:提出了一种近似低秩LU分解的快速算法。为了实现低复杂度,该算法使用稀疏随机投影与基于FFT的随机投影相结合。分析了算法的渐近逼近误差,给出了理论上的误差界。最后,数值示例说明,对于类似的近似误差,稀疏LU算法比最近的最新方法要快。该算法是完全可并行化的,并且可以在GPU上完全运行。性能在GPU卡上进行了测试,与顺序执行相比,显示出运行时间上的显着提高。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号