首页> 外文期刊>Computer Animation and Virtual Worlds >Mesh denoising via total variation and weighted Laplacian regularizations
【24h】

Mesh denoising via total variation and weighted Laplacian regularizations

机译:通过总变化和加权拉普拉斯正则化进行网格去噪

获取原文
获取原文并翻译 | 示例

摘要

Mesh denoising is a fundamental problem in geometry processing. The main challenge is to preserve sharp features (such as edges and corners) and smooth regions (such as smoothly curved regions and fine details) while removing the noise. State-of-the-art denoising methods still struggle with this issue. In this paper, we first propose a new variational model combining total variation and anisotropic Laplacian regularization to filter the normal vector field of the mesh. This model can preserve sharp features and simultaneously handle smooth regions well. Then, a new vertex updating scheme is presented to reconstruct the mesh according to the filtered face normals. It prevents the orientation ambiguity problem introduced by existing schemes. Experiments show that our denoising method outperforms all compared methods visually and quantitatively, especially for meshes consisting of both sharp features and smooth regions.
机译:网格降噪是几何处理中的基本问题。主要挑战是在去除噪声的同时,保留锋利的特征(例如,边缘和拐角)和平滑的区域(例如,平滑的弯曲区域和精细的细节)。最新的降噪方法仍在解决这个问题。在本文中,我们首先提出一个新的变分模型,该模型将总变分与各向异性拉普拉斯正则化相结合,以过滤网格的法向矢量场。该模型可以保留鲜明的特征,同时可以很好地处理平滑区域。然后,提出了一种新的顶点更新方案,根据滤波后的人脸法线重构网格。它防止了现有方案引入的定向模糊性问题。实验表明,我们的去噪方法在视觉和数量上都优于所有比较方法,特别是对于同时包含尖锐特征和平滑区域的网格。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号