首页> 外文期刊>Computational Statistics >Copula parameter estimation by maximum-likelihood and minimum-distance estimators: a simulation study
【24h】

Copula parameter estimation by maximum-likelihood and minimum-distance estimators: a simulation study

机译:通过最大似然和最小距离估计器估计Copula参数:模拟研究

获取原文
获取原文并翻译 | 示例

摘要

The purpose of this paper is to present a comprehensive Monte Carlo simulation study on the performance of minimum-distance (MD) and maximum-likelihood (ML) estimators for bivariate parametric copulas. In particular, I consider Cramér-von-Mises-, Kolmogorov-Smirnov- and L 1-variants of the CvM-statistic based on the empirical copula process, Kendall’s dependence function and Rosenblatt’s probability integral transform. The results presented in this paper show that regardless of the parametric form of the copula, the sample size or the location of the parameter, maximum-likelihood yields smaller estimation biases at less computational effort than any of the MD-estimators. The MD-estimators based on copula goodness-of-fit metrics, on the other hand, suffer from large biases especially when used for estimating the parameters of archimedean copulas. Moreover, the results show that the bias and efficiency of the minimum-distance estimators are strongly influenced by the location of the parameter. Conversely, the results for the maximum-likelihood estimator are relatively stable over the parameter interval of the respective parametric copula.
机译:本文的目的是针对双变量参数copulas的最小距离(MD)和最大似然(ML)估计器的性能提供全面的蒙特卡洛模拟研究。特别是,我基于经验copula过程,Kendall的依赖函数和Rosenblatt的概率积分变换,考虑了CvM统计量的Cramér-von-Mises-,Kolmogorov-Smirnov-和L 1 变量。本文提出的结果表明,无论联接参数的形式如何,样本大小或参数的位置如何,与任何MD估计器相比,最大似然法都可以在较小的计算量下产生较小的估计偏差。另一方面,基于copula拟合优度度量的MD估计量存在较大偏差,尤其是在用于估计阿基米德copulas参数时。此外,结果表明,最小距离估计器的偏差和效率受参数位置的强烈影响。相反,最大似然估计器的结果在各个参数copula的参数间隔内相对稳定。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号