首页> 外文期刊>Computational Social Systems, IEEE Transactions on >Investigating Link Inference in Partially Observable Networks: Friendship Ties and Interaction
【24h】

Investigating Link Inference in Partially Observable Networks: Friendship Ties and Interaction

机译:调查部分可观察的网络中的链路推断:友谊联系和互动

获取原文
获取原文并翻译 | 示例

摘要

While privacy preserving mechanisms, such as hiding one’s friends list, may be available to withhold personal information on online social networking sites, it is not obvious whether to which degree a user’s social behavior renders such an attempt futile. In this paper, we study the impact of additional interaction information on the inference of links between nodes in partially covert networks. This investigation is based on the assumption that interaction might be a proxy for connectivity patterns in online social networks. For this purpose, we use data collected from 586 Facebook profiles consisting of friendship ties (conceptualized as the network) and comments on wall posts (serving as interaction information) by a total of 64 000 users. The link-inference problem is formulated as a binary classification problem using a comprehensive set of features and multiple supervised learning algorithms. Our results suggest that interactions reiterate the information contained in friendship ties sufficiently well to serve as a proxy when the majority of a network is unobserved.
机译:尽管可以使用诸如隐藏朋友列表之类的隐私保护机制来保留在线社交网站上的个人信息,但用户的社交行为在多大程度上使这种尝试徒劳无功,这一点尚不清楚。在本文中,我们研究了附加交互信息对部分隐蔽网络中节点之间链接推断的影响。该调查基于以下假设:交互作用可能是在线社交网络中连接模式的代理。为此,我们使用从586个Facebook个人资料中收集的数据,该数据包括友谊纽带(概念化为网络)和总共64 000个用户在留言墙上的评论(用作交互信息)。使用一组全面的功能和多种监督学习算法,将链接推理问题表述为二进制分类问题。我们的结果表明,交互作用充分重申了友谊纽带中包含的信息,可以在大多数网络未被观察到时充当代理。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号