首页> 外文期刊>Computational Social Systems, IEEE Transactions on >A Signaling Game for Uncertain Data Delivery in Selfish Mobile Social Networks
【24h】

A Signaling Game for Uncertain Data Delivery in Selfish Mobile Social Networks

机译:自私的移动社交网络中不确定的数据传递的信号游戏

获取原文
获取原文并翻译 | 示例

摘要

Cooperative data delivery among mobile nodes can improve the performance of data delivery in mobile social networks. However, data routing in the presence of socially selfish (SS) nodes is challenging, where they mitigate the degree of their cooperation level based on their social features and ties to achieve their social objectives. This issue becomes more challenging when they prevent revealing their reactions about incoming messages, which leads data forwarding under uncertain behavior. In this paper, we propose a signaling game approach, namely, Sig4UDD, to study the impact of uncertain cooperation among well-behaved and SS nodes on the performance of data forwarding. In Sig4UDD, we employ Bayesian Nash equilibrium to analyze one-stage interactions among nodes. Then, perfect Bayesian equilibrium is applied to analyze their multistage interactions. In this stage, we establish a belief system to help SS nodes predict the type of their opponents and take appropriate actions to maximize their utilities. To update the beliefs of SS nodes, we devised the weighted social distance metric to measure the global social distance among nodes. Finally, we compare the performance of Sig4UDD to some benchmark cooperative and noncooperative data forwarding protocols using Reality Mining and Social Evolution data sets.
机译:移动节点之间的协作数据传递可以提高移动社交网络中数据传递的性能。但是,在存在社会自私(SS)节点的情况下进行数据路由具有挑战性,因为它们会根据其社会特征和联系来减轻其合作水平的程度,以实现其社会目标。当他们阻止透露对传入消息的反应时,此问题将变得更具挑战性,从而导致在不确定行为下进行数据转发。在本文中,我们提出了一种信号博弈方法,即Sig4UDD,以研究行为良好的SS节点之间不确定的协作对数据转发性能的影响。在Sig4UDD中,我们采用贝叶斯纳什均衡来分析节点之间的一阶段相互作用。然后,应用完美的贝叶斯平衡来分析它们的多阶段相互作用。在此阶段,我们建立一个信念系统,以帮助SS节点预测对手的类型并采取适当的措施以最大程度地发挥其效用。为了更新SS节点的信念,我们设计了加权社会距离度量标准来度量节点之间的全球社会距离。最后,我们使用Reality Mining和Social Evolution数据集将Sig4UDD的性能与某些基准合作和非合作数据转发协议进行了比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号