首页> 外文期刊>Computational Social Systems, IEEE Transactions on >Link Inference in Dynamic Heterogeneous Information Network: A Knapsack-Based Approach
【24h】

Link Inference in Dynamic Heterogeneous Information Network: A Knapsack-Based Approach

机译:动态异构信息网络中的链路推理:一种基于背包的方法

获取原文
获取原文并翻译 | 示例

摘要

Link inference, i.e., inferring links between vertices in a heterogeneous information network with heterogeneous vertices and edges, has been extensively studied in recent years. So far, many machine learning-based methods have been proposed for link inference, which can be classified into two categories, namely, supervised and unsupervised. Supervised methods perform well but highly rely on feature selection and training data. Although unsupervised methods are inferior to supervised ones, they work in a relatively simple way without considering the class distribution of the training data. In this paper, we investigate the link inference problem in heterogeneous information networks by proposing a knapsack-constrained inference method. Specifically, we integrate dynamic information into the heterogeneous information network and further formalize the link inference problem as a knapsack-like problem. We then solve it by the virtue of a 0-1 knapsack analogous optimization approach and investigate the time complexity of the proposed approach. Finally, experimental results show that the proposed unsupervised method can obtain high performance comparable to supervised method for some cases.
机译:近年来,对链接推断,即,推断具有异构顶点和边缘的异构信息网络中的顶点之间的链接。到目前为止,已经提出了许多基于机器学习的链接推理方法,这些方法可以分为有监督和无监督两类。有监督的方法效果不错,但高度依赖于特征选择和训练数据。尽管无监督方法不如受监督方法,但它们以相对简单的方式工作,而无需考虑训练数据的类分布。在本文中,我们通过提出背包约束推理方法研究异构信息网络中的链接推理问题。具体来说,我们将动态信息集成到异构信息网络中,并将链接推理问题进一步规范化为类似背包问题。然后,我们借助0-1背包类似优化方法来解决该问题,并研究所提出方法的时间复杂度。最后,实验结果表明,所提出的无监督方法在某些情况下可以获得与有监督方法相当的高性能。

著录项

  • 来源
  • 作者单位

    CAS Key Laboratory of Network Data Science and Technology, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China;

    CAS Key Laboratory of Network Data Science and Technology, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China;

    CAS Key Laboratory of Network Data Science and Technology, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China;

    CAS Key Laboratory of Network Data Science and Technology, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China;

    CAS Key Laboratory of Network Data Science and Technology, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Optimization; Current measurement; Training data; Motion pictures; Collaboration; Weight measurement;

    机译:优化;电流测量;训练数据;运动图像;协作;重量测量;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号