首页> 外文期刊>Computational Social Systems, IEEE Transactions on >A Scalable Platform to Collect, Store, Visualize, and Analyze Big Data in Real Time
【24h】

A Scalable Platform to Collect, Store, Visualize, and Analyze Big Data in Real Time

机译:可扩展平台,用于实时收集,存储,可视化和分析大数据

获取原文
获取原文并翻译 | 示例

摘要

Twitter has withstood the test of time as a successful social networking platform. In many circles globally, the majority of users choose Twitter when choosing a social media outlet for reliable scientific information and news. However, the Twitter application programming interface (API) limitations do not allow for low-cost data science options for academia. It becomes very expensive for academic researchers to gain the full potential of data analytics available from Twitter using a free API account. In this article, we present our big data analytics platform developed at our DaTALab at Lakehead University, Canada, that allows users to focus on their Twitter search criteria and gain access to large amounts of Twitter data at the touch of a button. The platform supports the collection of social media data and applies many filters for cleaning and further use for machine learning (ML) and artificial intelligence (AI)-based systems. Our focus has been primarily on healthcare-related research, which shows the strength of the presented platform. However, the platform itself is malleable to any topic of interest. Data collected and processed are suitable for further AI/ML analysis. We present our platform using a specific healthcare search topic to emphasize the power of our system for future research endeavors in the healthcare field.
机译:Twitter已被停用时间作为一个成功的社交网络平台的时间考验。在全球许多圈子中,大多数用户在选择社交媒体出口时选择Twitter,以获得可靠的科学信息和新闻。但是,Twitter应用程序编程接口(API)限制不允许进行学术界的低成本数据科学选项。学术研究人员将获得从Twitter使用免费API帐户获得的数据分析的全部潜力非常昂贵。在本文中,我们展示了我们在加拿大Lakehead University的DataLib上开发的大数据分析平台,允许用户专注于他们的Twitter搜索标准,并在按钮的触摸时获得大量的Twitter数据。该平台支持社交媒体数据的集合,并适用许多过滤器以进行清洁和进一步用于机器学习(ML)和人工智能(AI)的系统。我们的重点主要是与医疗保健相关的研究,这表明了所提出的平台的实力。但是,平台本身可展示任何感兴趣的主题。收集和加工的数据适用于进一步的AI / mL分析。我们使用特定的医疗保健搜索主题介绍我们的平台,强调我们的系统在医疗领域的未来研究努力的权力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号