首页> 外文期刊>Computational Social Systems, IEEE Transactions on >Multiple-Feature-Based Vehicle Supply–Demand Difference Prediction Method for Social Transportation
【24h】

Multiple-Feature-Based Vehicle Supply–Demand Difference Prediction Method for Social Transportation

机译:基于多个特征的车辆供需差分预测方法,用于社会运输

获取原文
获取原文并翻译 | 示例

摘要

Big data for social transportation brings unprecedented opportunities for us to solve the transportation problems that cannot be solved by traditional methods and build the next generation of the intelligent transportation system (ITS). As one of the important functions of the ITS, supply-demand difference prediction for autonomous vehicles provides a decision basis for its control. In this article, a new learning process is proposed with Multiple feature Extraction and Fusion utilizing the combination of deep and shallow Features (MEFF) (the spatial deep features, (short and long) temporal deep features, and fuzzy shallow (semantic) features). The spatial deep features are captured with residual network and dimension reduction in spatial deep block. The fuzzy shallow (semantic) features are captured with multiattention fuzzy mechanism in the fuzzy shallow block. With the fused spatial deep features and fuzzy shallow features, the temporal deep features are captured with long short-term memory (LSTM) and attention mechanism in the temporal and prediction block to get the final prediction results. Based on two different distributions of membership attention (mean distribution and Gaussian distribution) in the fuzzy shallow block, our process MEFF has two methods, i.e., MEFF-mean method and MEFF-Gaussian method. Extensive experiments show that our methods provide more accurate and stable prediction results than the existing state-of-art-methods.
机译:社会交通的大数据为我们带来了前所未有的机会,解决了传统方法无法解决的运输问题,并建立下一代智能交通系统(其)。作为其重要功能之一,自治车辆供需差异预测为其控制提供了决策依据。在本文中,提出了一种新的学习过程,利用了深度和浅层特征的组合(MEFF)(空间深度特征,(短和长)时间深度特征,以及模糊浅(语义)特征)的多种特征提取和融合。 。空间深度具有剩余网络和空间深度块的尺寸减小。模糊浅(语义)特征在模糊浅块中具有多角模糊机制。利用熔融空间深度特征和模糊浅景点,在时间和预测块中具有长短期存储器(LSTM)和注意机制,捕获时间深度特征,以获得最终预测结果。基于两种不同的成员注意力(平均分布和高斯分布)在模糊浅块中,我们的工艺Meff有两种方法,即Meff-incle方法和Meff-Gaussian方法。广泛的实验表明,我们的方法提供比现有最先进的方法更准确和稳定的预测结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号