首页> 外文期刊>Computational Social Systems, IEEE Transactions on >Movie Recommendation System Using Sentiment Analysis From Microblogging Data
【24h】

Movie Recommendation System Using Sentiment Analysis From Microblogging Data

机译:电影推荐系统使用微博数据的情感分析

获取原文
获取原文并翻译 | 示例

摘要

Recommendation systems (RSs) have garnered immense interest for applications in e-commerce and digital media. Traditional approaches in RSs include such as collaborative filtering (CF) and content-based filtering (CBF) through these approaches that have certain limitations, such as the necessity of prior user history and habits for performing the task of recommendation. To minimize the effect of such limitation, this article proposes a hybrid RS for the movies that leverage the best of concepts used from CF and CBF along with sentiment analysis of tweets from microblogging sites. The purpose to use movie tweets is to understand the current trends, public sentiment, and user response of the movie. Experiments conducted on the public database have yielded promising results.
机译:推荐系统(RSS)对电子商务和数字媒体的应用造成了巨大的兴趣。 RSS中的传统方法包括通过具有一定限制的方法,例如具有某些限制的方法,例如用于执行推荐任务的先前用户历史和习惯的必要性。为了最大限度地减少此类限制的效果,本文提出了一种混合RS,用于电影中利用CF和CBF使用的最佳概念以及来自微博站点的推文的情绪分析。使用电影推文的目的是了解电影的当前趋势,公众情绪和用户响应。在公共数据库上进行的实验产生了有希望的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号