首页> 外文期刊>Computational Social Systems, IEEE Transactions on >Multi-Modality Behavioral Influence Analysis for Personalized Recommendations in Health Social Media Environment
【24h】

Multi-Modality Behavioral Influence Analysis for Personalized Recommendations in Health Social Media Environment

机译:健康社交媒体环境中个性化推荐的多模式行为影响分析

获取原文
获取原文并翻译 | 示例

摘要

Recently, health social media have engaged more and more people to share their personal feelings, opinions, and experience in the context of health informatics, which has drawn increasing attention from both academia and industry. In this paper, we focus on the behavioral influence analysis based on heterogeneous health data generated in social media environments. An integrated deep neural network (DNN)-based learning model is designed to analyze and describe the latent behavioral influence hidden across multiple modalities, in which a convolutional neural network (CNN)-based framework is used to extract the time-series features within a certain social context. The learned features based on cross-modality influence analysis are then trained in a SoftMax classifier, which can result in a restructured representation of high-level features for online physician rating and classification in a data-driven way. Finally, two algorithms within two representative application scenarios are developed to provide patients with personalized recommendations in health social media environments. Experiments using the real world data demonstrate the effectiveness of our proposed model and method.
机译:近年来,健康社交媒体已经吸引了越来越多的人在健康信息学的背景下分享他们的个人感受,观点和经验,这引起了学术界和工业界的越来越多的关注。在本文中,我们专注于基于社交媒体环境中生成的异构健康数据的行为影响分析。设计了一种基于集成深度神经网络(DNN)的学习模型来分析和描述跨多种模式隐藏的潜在行为影响,其中使用基于卷积神经网络(CNN)的框架来提取一个模型中的时间序列特征。特定的社会背景。然后,在SoftMax分类器中对基于交叉模式影响分析的学习特征进行训练,这可以通过数据驱动的方式对在线医师评分和分类的高级特征进行重组表示。最后,开发了两个代表性应用场景中的两种算法,以在健康社交媒体环境中为患者提供个性化推荐。使用现实世界数据进行的实验证明了我们提出的模型和方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号