首页> 外文期刊>Computational methods and function theory >Asymptotics of the Energy of Sections of Greedy Energy Sequences on the Unit Circle, and Some Conjectures for General Sequences
【24h】

Asymptotics of the Energy of Sections of Greedy Energy Sequences on the Unit Circle, and Some Conjectures for General Sequences

机译:单位圆上贪婪能量序列各部分的能量的渐近性以及一般序列的一些猜想

获取原文
获取原文并翻译 | 示例

摘要

In this paper we investigate the asymptotic behavior of the Riesz s-energy of the first N points of a greedy s-energy sequence on the unit circle, for all values of s in the range 0 <= s < infinity (identifying as usual the case s = 0 with the logarithmic energy). In the context of the unit circle, greedy s-energy sequences coincide with the classical Leja sequences constructed using the logarithmic potential. We obtain first-order and second-order asymptotic results. The key idea is to express the Riesz s-energy of the first N points of a greedy s-energy sequence in terms of the binary representation of N. Motivated by our results, we pose some conjectures for general sequences on the unit circle.
机译:在本文中,我们研究了单位圆上贪婪s能量序列的前N个点的Riesz s能量的渐近行为,其中s的所有值都在0 <= s <无穷大(通常确定为情况s = 0(具有对数能量)。在单位圆的上下文中,贪婪的S能量序列与使用对数势构造的经典Leja序列重合。我们获得一阶和二阶渐近结果。关键思想是用N的二进制表示形式来表示贪婪s能量序列的前N个点的Riesz s能量。根据我们的结果,我们对单位圆上的一般序列提出了一些猜想。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号