首页> 外文期刊>Computational Mechanics >Multiple-cracked fatigue crack growth by BEM
【24h】

Multiple-cracked fatigue crack growth by BEM

机译:边界元法的多裂纹疲劳裂纹扩展

获取原文
获取原文并翻译 | 示例

摘要

The dual boundary element method is applied for the two-dimensional linear elastic analysis of fatigue problem of multiple-cracked body. The traction integral equation is applied on ones of surfaces of cracks while the usual displacement integral equation simultaneously on the others. General multiple crack growth problem is solved in a single-region formulation. All crack surfaces are discretized with discontinuous quadratic boundary elements. J-integral technique is used to evaluate stress intensity factors. The real extension path of cracks is simulated by a linear incremental crack extension, based on the maximum principal stress criterion. For each increment analysis of the cracks, crack extension is conveniently modelled with new boundary elements. Remeshing is no longer necessary. Fatigue life analysis is carried out with Paris' formulae. Several numerical examples show high efficiency of present method.
机译:将双边界元方法应用于多裂纹体疲劳问题的二维线性弹性分析。牵引积分方程应用于一个裂纹表面,而通常的位移积分方程同时应用于其他裂纹表面。一般的多裂纹扩展问题可以通过单区域公式解决。所有裂纹表面都用不连续的二次边界元素离散化。 J积分技术用于评估应力强度因子。裂纹的实际扩展路径是基于最大主应力准则,通过线性增量裂纹扩展来模拟的。对于每个裂纹增量分析,都可以使用新的边界元素方便地对裂纹扩展进行建模。不再需要重新啮合。疲劳寿命分析是根据巴黎的公式进行的。几个数值例子表明了本方法的高效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号