首页> 外文期刊>Computational management science >Single cut and multicut stochastic dual dynamic programming with cut selection for multistage stochastic linear programs: convergence proof and numerical experiments
【24h】

Single cut and multicut stochastic dual dynamic programming with cut selection for multistage stochastic linear programs: convergence proof and numerical experiments

机译:多级随机线性课程剪切选择单切割和多型随机双动脉编程:收敛证明和数值实验

获取原文
获取原文并翻译 | 示例

摘要

We introduce a variant of Multicut Decomposition Algorithms, called CuSMuDA (Cut Selection for Multicut Decomposition Algorithms), for solving multistage stochastic linear programs that incorporates a class of cut selection strategies to choose the most relevant cuts of the approximate recourse functions. This class contains Level 1 (Philpott et al. in J Comput Appl Math 290:196-208, 2015) and Limited Memory Level 1 (Guigues in Eur J Oper Res 258:47-57, 2017) cut selection strategies, initially introduced for respectively Stochastic Dual Dynamic Programming and Dual Dynamic Programming. We prove the almost sure convergence of the method in a finite number of iterations and obtain as a by-product the almost sure convergence in a finite number of iterations of Stochastic Dual Dynamic Programming combined with our class of cut selection strategies. We compare the performance of Multicut Decomposition Algorithms, Stochastic Dual Dynamic Programming, and their variants with cut selection (using Level 1 and Limited Memory Level 1) on several instances of a portfolio problem. On these experiments, in general, Stochastic Dual Dynamic Programming is quicker (i.e., satisfies the stopping criterion quicker) than Multicut Decomposition Algorithms and cut selection allows us to decrease the computational bulk with Limited Memory Level 1 being more efficient (sometimes much more) than Level 1.
机译:我们介绍了多型分解算法的变种,称为Cusmuda(切割选择用于多型分解算法),用于求解多级随机线性程序,其中包含一类切割选择策略,以选择近似追索功能的最相关的削减。此类包含1级(Philpott等人。在J Comput Appl Math 290:196-208,2015)和有限的内存级别1(Juigues of J of Eure of 258:47-57,2017)削减选择策略,最初介绍随机双动规划和双动态规划。我们在有限数量的迭代中证明了该方法的几乎肯定会聚,并获得了随机双动态编程的有限次数与我们的剪切选择策略相结合的有限次数的几乎肯定的融合。我们比较多型分解算法,随机双动态编程的性能,以及在组合问题的几个实例上进行切割选择(在使用级别1和有限的存储器级别1)的变体。在这些实验中,一般而言,随机双动脉编程比Multicut分解算法更快(即,满足停止标准),并且切割选择使我们能够减少有限的存储器级别1更有效(有时更多)的计算散装1级。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号