首页> 外文期刊>Computational Intelligence >Sentiment classification with adversarial learning and attention mechanism
【24h】

Sentiment classification with adversarial learning and attention mechanism

机译:具有对抗学习和关注机制的情感分类

获取原文
获取原文并翻译 | 示例

摘要

Sentiment classification is a key task in sentiment analysis, reviews mining, and other text mining applications. Various models have been proposed to build sentiment classifiers, but the classification performances of some existing methods are not good enough. Meanwhile, as a subproblem of sentiment classification, positive and unlabeled learning (PU learning) problem widely exists in real-world cases, but it has not been given enough attention. In this article, we aim to solve the two problems in one framework. We first build a model for traditional sentiment classification based on adversarial learning, attention mechanism, and long short-term memory (LSTM) network. We further propose an enhanced adversarial learning method to tackle PU learning problem. We conducted extensive experiments in three real-world datasets. The experimental results demonstrate that our models outperform the compared methods in both traditional sentiment classification problem and PU learning problem. Furthermore, we study the effect of our models on word embedding. Finally, we report and discuss the sensitivity of our models to parameters.
机译:情感分类是情感分析的关键任务,评论挖掘和其他文本挖掘应用程序。已经提出了各种模型来构建情绪分类器,但某些现有方法的分类性能不够好。同时,作为情绪分类的子问题,实际和未标记的学习(PU学习)问题在现实世界的情况下广泛存在,但它没有得到足够的关注。在本文中,我们的目标是解决一个框架中的两个问题。我们首先构建基于对抗性学习,注意机制和长短期记忆(LSTM)网络的传统情绪分类模型。我们进一步提出了一种增强的对抗性学习方法来解决PU学习问题。我们在三个现实世界数据集中进行了广泛的实验。实验结果表明,我们的模型在传统情绪分类问题和PU学习问题中表明了比较方法。此外,我们研究了我们模型对嵌入词的影响。最后,我们向参数报告并讨论模型的敏感性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号