首页> 外文期刊>Computational Intelligence >FEATURE TRANSFORMATION: A GENETIC-BASED FEATURE CONSTRUCTION METHOD FOR DATA SUMMARIZATION
【24h】

FEATURE TRANSFORMATION: A GENETIC-BASED FEATURE CONSTRUCTION METHOD FOR DATA SUMMARIZATION

机译:特征转换:一种基于遗传的数据汇总特征构造方法

获取原文
获取原文并翻译 | 示例

摘要

The importance of input representation has been recognized already in machine learning. This article discusses the application of genetic-based feature construction methods to generate input data for the data summarization method called Dynamic Aggregation of Relational Attributes (DARA). Here, feature construction methods are applied to improve the descriptive accuracy of the DARA algorithm. The DARA algorithm is designed to summarize data stored in the nontarget tables by clustering them into groups, where multiple records stored in nontarget tables correspond to a single record stored in a target table. This article addresses the question whether or not the descriptive accuracy of the DARA algorithm benefits from the feature construction process. This involves solving the problem of constructing a relevant set of features for the DARA algorithm by using a genetic-based algorithm. This work also evaluates several scoring measures used as fitness functions to find the best set of constructed features.
机译:输入表示的重要性已经在机器学习中得到认可。本文讨论了基于遗传的特征构造方法在为称为“关系属性动态聚合”(DARA)的数据汇总方法生成输入数据中的应用。在这里,使用特征构造方法来提高DARA算法的描述精度。 DARA算法旨在通过将非目标表中的数据聚类成组来汇总它们,其中存储在非目标表中的多个记录对应于存储在目标表中的单个记录。本文解决了一个问题,即DARA算法的描述准确性是否从特征构造过程中受益。这涉及解决通过使用基于遗传的算法为DARA算法构造一组相关的特征的问题。这项工作还评估了用作适应度函数的几种评分方法,以找到最佳的构建特征集。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号