首页> 外文会议>Advanced data mining and applications >A Genetic-Based Feature Construction Method for Data Summarisation
【24h】

A Genetic-Based Feature Construction Method for Data Summarisation

机译:基于遗传的数据汇总特征构造方法

获取原文
获取原文并翻译 | 示例

摘要

The importance of input representation has been recognised already in machine learning. This paper discusses the application of genetic-based feature construction methods to generate input data for the data summarisation method called Dynamic Aggregation of Relational Attributes (DARA). Here, feature construction methods are applied in order to improve the descriptive accuracy of the DARA algorithm. The DARA algorithm is designed to summarise data stored in the non-target tables by clustering them into groups, where multiple records stored in non-target tables correspond to a single record stored in a target table. This paper addresses the question whether or not the descriptive accuracy of the DARA algorithm benefits from the feature construction process. This involves solving the problem of constructing a relevant set of features for the DARA algorithm by using a genetic-based algorithm. This work also evaluates several scoring measures used as fitness functions to find the best set of constructed features.
机译:输入表示的重要性已经在机器学习中得到认可。本文讨论了基于遗传的特征构造方法在为称为“关系属性动态聚合”(DARA)的数据汇总方法生成输入数据中的应用。在这里,为了提高DARA算法的描述精度,应用了特征构造方法。 DARA算法旨在通过将非目标表中的数据聚类成组来汇总它们,其中存储在非目标表中的多个记录对应于存储在目标表中的单个记录。本文讨论了DARA算法的描述准确性是否受益于特征构建过程的问题。这涉及解决通过使用基于遗传的算法为DARA算法构造一组相关的特征的问题。这项工作还评估了用作适应度函数的几种评分方法,以找到最佳的构建特征集。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号