首页> 外文期刊>Computational Intelligence >MOLECULAR EVENT EXTRACTION FROM LINK GRAMMAR PARSE TREES IN THE BIONLP'09 SHARED TASK
【24h】

MOLECULAR EVENT EXTRACTION FROM LINK GRAMMAR PARSE TREES IN THE BIONLP'09 SHARED TASK

机译:BIONLP'09共享任务中的链接语法分析树中的分子事件提取

获取原文
获取原文并翻译 | 示例

摘要

The BioNLP'09 Shared Task deals with extracting information on molecular events, such as gene expression and protein localization, from natural language text. Information in this benchmark are given as tuples including protein names, trigger terms for each event, and possible other participants such as bindings sites. We address all three tasks of BioNLP'09: event detection, event enrichment, and recognition of negation and speculation. Our method for the first two tasks is based on a deep parser; we store the parse tree of each sentence in a relational database scheme. From the training data, we collect the dependencies connecting any two relevant terms of a known tuple, that is, the shortest paths linking these two constituents. We encode all such linkages in a query language to retrieve similar linkages from unseen text. For the third task, we rely on a hierarchy of hand-crafted regular expressions to recognize speculation and negated events. In this paper, we added extensions regarding a post-processing step that handles ambiguous event trigger terms, as well as an extension of the query language to relax linkage constraints. On the BioNLP Shared Task test data, we achieve an overall F1-measure of 32%, 29%, and 30% for the successive Tasks 1, 2, and 3, respectively.
机译:BioNLP'09共享任务负责从自然语言文本中提取有关分子事件的信息,例如基因表达和蛋白质定位。该基准测试中的信息以元组形式给出,包括蛋白质名称,每个事件的触发条件以及可能的其他参与者(如结合位点)。我们处理BioNLP'09的所有三个任务:事件检测,事件丰富以及对否定和推测的识别。我们前两个任务的方法是基于深度解析器的。我们将每个句子的分析树存储在关系数据库方案中。从训练数据中,我们收集依赖关系,该依赖关系连接已知元组的任何两个相关术语,即链接这两个成分的最短路径。我们使用查询语言对所有此类链接进行编码,以从看不见的文本中检索相似的链接。对于第三项任务,我们依靠手工制作的正则表达式层次结构来识别推测和否定事件。在本文中,我们添加了有关处理歧义事件触发项的后处理步骤的扩展,以及对查询语言的扩展,以放松链接约束。根据BioNLP共享任务测试数据,对于连续的任务1、2和3,我们的总体F1测度分别为32%,29%和30%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号