首页> 外文期刊>Computational Intelligence >Building a Language-Independent Discourse Parser using Universal Networking Language
【24h】

Building a Language-Independent Discourse Parser using Universal Networking Language

机译:使用通用网络语言构建独立于语言的语篇解析器

获取原文
获取原文并翻译 | 示例

摘要

Discourse parsing has become an inevitable task to process information in the natural language processing arena. Parsing complex discourse structures beyond the sentence level is a significant challenge. This article proposes a discourse parser that constructs rhetorical structure (RS) trees to identify such complex discourse structures. Unlike previous parsers that construct RS trees using lexical features, syntactic features and cue phrases, the proposed discourse parser constructs RS trees using high-level semantic features inherited from the Universal Networking Language (UNL). The UNL also adds a language-independent quality to the parser, because the UNL represents texts in a language-independent manner. The parser uses a naive Bayes probabilistic classifier to label discourse relations. It has been tested using 500 Tamil-language documents and the Rhetorical Structure Theory Discourse Treebank, which comprises 21 English-language documents. The performance of the naive Bayes classifier has been compared with that of the support vector machine (SVM) classifier, which has been used in the earlier approaches to build a discourse parser. It is seen that the naive Bayes probabilistic classifier is better suited for discourse relation labeling when compared with the SVM classifier, in terms of training time, testing time, and accuracy.
机译:话语分析已经成为在自然语言处理领域中处理信息的必然任务。解析超出句子级别的复杂话语结构是一项重大挑战。本文提出了一种语篇解析器,该解析器构造了修辞结构(RS)树来识别这种复杂的语篇结构。与以前的使用词法特征,句法特征和提示短语构造RS树的解析器不同,建议的语篇解析器使用从通用网络语言(UNL)继承的高级语义特征来构造RS树。 UNL还为解析器增加了与语言无关的质量,因为UNL以与语言无关的方式表示文本。解析器使用朴素的贝叶斯概率分类器标记话语关系。已使用500个泰米尔语文件和“修辞结构理论”话语树库(包括21个英语文件)进行了测试。已将朴素贝叶斯分类器的性能与支持向量机(SVM)分类器的性能进行了比较,后者已在较早的方法中用于构建话语解析器。可以看出,与SVM分类器相比,朴素的贝叶斯概率分类器在训练时间,测试时间和准确性方面更适合于话语关系标记。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号