首页> 外文期刊>Computational Intelligence >Forecasting Financial Time Series with Grammar-Guided Feature Generation
【24h】

Forecasting Financial Time Series with Grammar-Guided Feature Generation

机译:使用语法指导的特征生成预测财务时间序列

获取原文
获取原文并翻译 | 示例

摘要

The application of machine learning techniques to forecast financial time series is not a recent development, yet it continues to attract considerable attention because of the difficulty of the problem that is compounded by the nonlinear and nonstationary nature of the time series. The choice of an appropriate set of features is crucial to improve forecasting accuracy of machine learning techniques. In this article, we propose a systematic way for generating rich features using context-free grammars. Our proposed methodology identifies potential candidates for new technical indicators that consistently improve forecasts compared with some well-known indicators. The notion of grammar families as a compact representation to generate a rich class of features is exploited, and implementation issues are discussed in detail. The proposed methodology is tested on closing price data of major stock market indices, and the forecasting performance is compared with some standard techniques. A comparison with the conventional approach using standard technical indicators and naive approaches is shown.
机译:机器学习技术在预测金融时间序列方面的应用并不是最近的发展,但是由于时间序列的非线性和非平稳性质使问题变得更加复杂,因此它继续引起了人们的广泛关注。选择适当的功能集对于提高机器学习技术的预测准确性至关重要。在本文中,我们提出了一种使用上下文无关文法生成丰富特征的系统方法。我们提出的方法论确定了一些新技术指标的潜在候选者,这些新技术指标与某些知名指标相比能够不断改善预测。语法族作为生成丰富的功能类别的紧凑表示形式的概念得到了利用,并详细讨论了实现问题。对主要股票市场指数收盘价数据进行了测试,并与一些标准技术进行了比较。显示了与使用标准技术指标和幼稚方法的常规方法的比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号