首页> 外文期刊>Computational Intelligence >One-class SVM for biometric authentication by keystroke dynamics for remote evaluation
【24h】

One-class SVM for biometric authentication by keystroke dynamics for remote evaluation

机译:一键式SVM,可通过按键动态进行生物特征认证,以进行远程评估

获取原文
获取原文并翻译 | 示例

摘要

Remote skills assessment in distance education needs individual identification in distinguishing between candidates and impostors. Keystroke dynamics is a behavioral biometrics which can be used to identify them. To expect lower error rate, behaviors should be as natural and consistent as possible. The unique identifier assigned to students at their registration seems appropriate but the classification method applied for this case of anomaly detection must be robust even with a lower signature number. In this paper, we first explain how we construct our own dataset. Three methods of selecting Gaussian kernel parameters for one-class support vector machine are subsequently studied regarding the targeted application constraints. The results show that an indirect method as distance to farthest neighbor cannot be used because some signature features have multimodal and dispersed distributions. A method is then proposed based on the selection of the parameters via detecting the "tightness" of the decision boundaries and uses a greedy search. Its performances are compared to those of a grid search method using LibSVM. The results show that the proposed method is more robust when the signatures number decreases and better and more stable in detecting impostors.
机译:远程教育中的远程技能评估需要个人识别,以区分候选人和冒名顶替者。击键动力学是一种行为生物特征,可以用来识别它们。为了期望更低的错误率,行为应尽可能自然且一致。在学生注册时分配给学生的唯一标识符似乎是适当的,但是用于这种异常检测的分类方法即使具有较低的签名号也必须是可靠的。在本文中,我们首先说明如何构建自己的数据集。随后针对目标应用约束,研究了针对一类支持向量机选择高斯核参数的三种方法。结果表明,由于某些签名特征具有多峰分布和分散分布,因此无法使用间接方法作为到最远邻居的距离。然后提出一种方法,该方法基于参数的选择,通过检测决策边界的“紧密性”,并使用贪婪搜索。将其性能与使用LibSVM的网格搜索方法的性能进行了比较。结果表明,该方法在签名数减少时更鲁棒,并且在检测冒名顶替者时更好,更稳定。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号