首页> 外文期刊>IEEE computational intelligence magazine >An Efficient Memetic Algorithm for Influence Maximization in Social Networks
【24h】

An Efficient Memetic Algorithm for Influence Maximization in Social Networks

机译:社交网络中影响力最大化的高效模因算法

获取原文
获取原文并翻译 | 示例

摘要

Influence maximization is to extract a small set of nodes from a social network which influences the propagation maximally under a cascade model. In this paper, we propose a memetic algorithm for community-based influence maximization in social networks. The proposed memetic algorithm optimizes the 2-hop influence spread to find the most influential nodes. Problem-specific population initialization and similarity-based local search are designed to accelerate the convergence of the algorithm. Experiments on three realworld datasets demonstrate that our algorithm has competitive performances to the comparing algorithms in terms of effectiveness and efficiency. For example, on a real-world network of 15233 nodes and 58891 edges, the influence spread of the proposed algorithm is 12.5%, 13.2% and 173.5% higher than the three comparing algorithms Degree, PageRank and Random, respectively.
机译:影响最大化是从社交网络中提取一小组节点,这在级联模型下最大程度地影响传播。在本文中,我们提出了一种在社交网络中基于社区的影响力最大化的模因算法。拟议的模因算法优化了两跳影响扩散,以找到最具影响力的节点。针对特定问题的总体初始化和基于相似度的局部搜索旨在加快算法的收敛速度。在三个真实世界的数据集上进行的实验表明,我们的算法在有效性和效率上都比比较算法具有竞争优势。例如,在具有15233个节点和58891个边的真实世界网络上,所提出算法的影响范围分别比三种比较算法“度数”,“ PageRank”和“随机”分别高12.5%,13.2%和173.5%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号