首页> 外文期刊>Computational Intelligence and AI in Games, IEEE Transactions on >A Robust Learning Approach to Repeated Auctions With Monitoring and Entry Fees
【24h】

A Robust Learning Approach to Repeated Auctions With Monitoring and Entry Fees

机译:一种鲁棒的学习方法,可重复进行拍卖,且需收取监控费和入场费

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we present a strategic bidding framework for repeated auctions with monitoring and entry fees. We motivate and formally define the desired properties of our framework and present a recursive bidding algorithm, according to which buyers learn to avoid submitting bids in stages where they have a relatively low chance of winning the auctioned item. The proposed bidding strategies are computationally simple as players do not need to recompute the sequential strategies from the data collected to date. Pursuing the proposed efficient bidding (EB) algorithm, players monitor their relative performance in the course of the game and submit their bids based on their current estimate of the market condition. We prove the stability and robustness of the proposed strategies and show that they dominate myopic and random bidding strategies using an experiment in search engine marketing.
机译:在本文中,我们提出了具有监督和入场费的重复拍卖的战略投标框架。我们激励并正式定义我们框架的期望属性,并提出一种递归竞标算法,根据该算法,买家将学会避免在中标机会较小的阶段提交投标。提议的出价策略在计算上很简单,因为玩家无需从迄今为止收集的数据中重新计算顺序策略。遵循提出的有效出价(EB)算法,玩家在游戏过程中监视他们的相对表现,并根据当前对市场状况的估计来提交出价。我们证明了所提出策略的稳定性和鲁棒性,并使用搜索引擎营销中的实验证明了它们主导了近视和随机出价策略。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号